Photochemistry is the area of science exploring the effects of light on organic and inorganic molecules.  The wavelengths of interest in photochemistry are UV (wavelengths 100 – 400 nm), visible light (400 – 750 nm) and Infrared light (750 – 2500 nm).

    Photochemistry is critical to life on earth.  It is the mechanism by which plants and algae turn light from the sun into sugars.  Through the same photochemical reaction carbon dioxide and water are converted into oxygen.  This process is called photosynthesis.

    Photochemistry, photons and photocatalysts

    A photochemical reaction is initiated by the emission of a photon of light from a light source.  The light source could be a polychromatic source such as the sun.  In laboratories it is more common to use a mercury lamp or LED array.   The photon can be absorbed either, directly by the reactant, or by a photosensitizer, or a photocatalyst.

    If the photon is absorbed directly by the reactant.  The absorption of the photon provides the activation energy for the reaction to progress.

    If the photon is absorbed by a sensitizer.  The sentisizer absorbs the photon and transfers the energy to the reactant.

    In photogenerated catalysis, the photocatalytic activity relies on the ability of the catalyst to create electron–hole pairs following absorption of a photon.  These electron-hole pairs generate free radicals that are able to undergo secondary reactions.

    Photochemistry and photosynthesis

    Photochemistry via the reaction of photosynthesis is the mechanism by which the oxygen content in the earth’s atmosphere is maintained.  Therefore, via photosynthesis photochemistry supplies all the energy necessary for life on earth.  In addition, all the organic compounds on earth exist through photochemistry.

    Photosynthesis is a photocatalytic reaction.  The photocatalyst employed is chlorophyll, the green pigments in the leaves and stem of plants.  By way of example, the absorption spectra for Chlorophyll is shown below, the absorption maxima occurs at 420 nm:

    Vapourtec absorption spectra chlorophyll 


    Light sources used in laboratory photochemistry

    The chart below shows the emission spectra of typical light sources used for photochemistry in the laboratory.

    Vapourtec light sources for photochemistry


    Combining continuous flow with photochemistry

    Over the last couple of decades, the demand for sustainable and environmentally friendly technologies has led to an increased awareness of organic photochemistry as a clean, reagent-less application.[2]  Parallel with this has been growing awareness and take-up of continuous flow chemistry. A flow chemistry approach to photochemistry only increases its productivity, flexibility and potential over the traditional batch process.   Flow photochemistry has many advantages over conventional batch applications, such as consistent light penetration, controlled exposure times, precise temperature control, easy scalability and the continuous removal of photochemical products from the irradiated area. These features will typically result in higher conversions and yields, improved selectivity, enhanced energy efficiency and a reduction in waste due to lower solvent volumes.


    Examples of photochemistry


    Green Photochemistry-solar-chemistry-M-Oelgemoller


    1. Wayne, C. E.; Wayne, R. P. Photochemistry, 1st ed.; Oxford University Press: Oxford, United Kingdom, reprinted 2005. ISBN 0-19-855886-4.
    2. . J.P. Knowles, L.D. Elliott & K.I. Booker-Milburn Beilstein J. Org. Chem. 2012 8, 2025-2052
    3.  Speciality Chemicals Magazine – November 2014



    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us

    Request a quote