Taylor-vortex membrane reactor for continuous gas-liquid reactions
- Baldassarre Veneziaa
- David C. Morrisb
- Asterios Gavriilidisa
- aDepartment of Chemical Engineering, University College London, Torrington Place, London, UK
- bAutichem Ltd, Unit 4, Gatewarth Industrial Estate Barnard Street Warrington WA5 1DD
Read the publication that featured this abstractA unique Taylor-vortex membrane reactor (TVMR) design for continuous gas-liquid reactions is presented in this work. The reactor consists of a cylindrical rotor inside a stationary concentric cylindrical vessel, and a flexible system of equispaced baffle rings surrounding the rotor. This restricts the annular cross section to a small gap between the baffles and the rotor, and divides the annulus into 18 mixing zones. The baffles support a 6 m long PFA tubular membrane that is woven around the rotor. At 4 mL/min inlet flowrate, the TVMR showed a plug-flow behaviour and outperformed the unbaffled reactor, having 5 – 12 times lower axial dispersion. The continuous aerobic oxidation of benzyl alcohol was performed for 7 h using the Pd(OAc)2/pyridine catalyst in toluene at 100 °C and 1.1 MPa oxygen pressure. A stable conversion of 30% was achieved with 85% benzaldehyde selectivity, and no pervaporation of organics into the gas phase.
Get in touch
For more information on flow chemistry systems and services please use the contact methods below.
Call us on +44 (0)1284 728659 or Email us
Resource Centre
R-Series

The Vapourtec R-Series is, quite simply, unrivalled for flow chemistry
- Flexible |
- Precise |
- Automatable
The R-Series is undoubtedly the most versatile, modular flow chemistry system available today.
E-Series

The Vapourtec E-Series is the perfect introductory system for flow chemistry
- Robust |
- Easy to use |
- Affordable
The E-Series is a robust and affordable, entry level flow chemistry system designed for reliability and ease of use.