Synthesis of Carbohydrate-Functionalised Sequence-Defined Oligo(amidoamine)s by Photochemical ThiolEne Coupling in a Continuous Flow Reactor

    Felix Wojcik1,2, Alexander G. O'Brien1,2, Sebastian Götze1,2, Peter H. Seeberger1,2, Laura Hartmann1,2

    • 1Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)
    • 2Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin (Germany)

    Poly/oligo(amidoamine)s (PAAs) have recently been recognised for their potential as well-defined scaffolds for multiple carbohydrate presentation and as multivalent ligands. Herein, we report two complimentary strategies for the preparation of such sequence-defined carbohydrate-functionalised PAAs that use photochemical thiol[BOND]ene coupling (TEC) as an alternative to the established azide–alkyne cycloaddition (“click”) reaction. In the first approach, PAAs that contained multiple olefins were synthesised on a solid support from a new building block and subsequent conjugation with unprotected thio-carbohydrates. Alternatively, a pre-functionalised building block was prepared by using TEC and assembled on a solid support to provide a carbohydrate-functionalised PAA. Both methods rely on the use of a continuous flow photoreactor for the TEC reactions. This system is highly efficient, owing to its short path length, and requires no additional radical initiator. Performing the reactions at 254 nm in Teflon AF-2400 tubing provides a highly efficient TEC procedure for carbohydrate conjugation, as demonstrated in the reactions of O-allyl glycosides with thiols. This method allowed the complete functionalisation of all of the reactive sites on the PAA backbone in a single step, thereby obtaining a defined homogeneous sequence. Furthermore, reaction at 366 nm in FEP tubing in the flow reactor enabled the large-scale synthesis of an fluorenylmethyloxycarbonyl (Fmoc)-protected glycosylated building block, which was shown to be suitable for solid-phase synthesis and will also allow heterogeneous sequence control of different carbohydrates along the oligomeric backbone. These developments enable the synthesis of sequence-defined carbohydrate-functionalised PAAs with potential biological applications.

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us