Electroactive and Photoactive Poly[Isoindigo-alt-EDOT] Synthesized Using Direct (Hetero)Arylation Polymerization in Batch and in Continuous Flow

    • François Grenier
    • Badrou Réda Aïch † ‡
    • Yu-Ying Lai §
    • Maxime Guérette
    • Andrew B. Holmes §
    • Ye Tao
    • Wallace W. H. Wong * §
    • Mario Leclerc * †
    • Département de Chimie, Université Laval, Québec City, Qc G1V 0A6, Canada
    • Information and Communications Technologies Portfolio, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
    • § School of Chemistry, Bio21 Institute, the University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
    Electroactive and Photoactive Poly[Isoindigo-alt-EDOT] Synthesized Using Direct (Hetero)Arylation Polymerization in Batch and in Continuous Flow

    In this work, a combined approach was used to obtain a low-cost material for organic electronics by focusing on inexpensive monomers, short synthetic pathway, high-yielding polymerization method, low waste, and easy scalability. To achieve this, a new material, poly[isoindigo-alt-3,4-ethylenedioxythiophene], was synthesized using direct (hetero)arylation polymerization (DHAP). Only a few synthetic steps are required to obtain this material, and no organometallic intermediates are used. In order to make a bigger step toward a truly inexpensive technology, continuous flow methods were applied for the first time to DHAP. This method helped solving a common problem encountered in conjugated polymers synthesis, namely, batch-to-batch variations. Electronic properties of this polymeric material were evaluated using field effect transistors (μh = 7 × 10–3 cm2·V–1·s–1) and solar cells (η = 3.0%).

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us