A scalable and operationally simple radical trifluoromethylation

    • Joel W. Beatty1
    • James J. Douglas1,2
    • Kevin P. Cole2
    • Corey R. J. Stephenson1
    • 1 Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
    • 2 Small Molecule Design and Development, Lilly Research Laboratoires, Eli Lilly and Company, Indianapolis, Indiana 46285, USA

    The large number of reagents that have been developed for the synthesis of trifluoromethylated compounds is a testament to the importance of the CF3 group as well as the associated synthetic challenge. Current state-of-the-art reagents for appending the CF3 functionality directly are highly effective; however, their use on preparative scale has minimal precedent because they require multistep synthesis for their preparation, and/or are prohibitively expensive for large-scale application. For a scalable trifluoromethylation methodology, trifluoroacetic acid and its anhydride represent an attractive solution in terms of cost and availability; however, because of the exceedingly high oxidation potential of trifluoroacetate, previous endeavours to use this material as a CF3 source have required the use of highly forcing conditions. Here we report a strategy for the use of trifluoroacetic anhydride for a scalable and operationally simple trifluoromethylation reaction using pyridine N-oxide and photoredox catalysis to affect a facile decarboxylation to the CF3 radical., USA

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us

    Request a quote