Ozone-Mediated Amine Oxidation and Beyond: A Solvent Free, Flow-Chemistry Approach
Eric A. Skrotzkia, Jaya Kishore Vandavasia, Stephen G. Newmana
- aCentre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada.
Read the publication that featured this abstractOzone is a powerful oxidant, most commonly used for oxidation of alkenes to carbonyls. The synthetic utility of other ozone-mediated reactions is hindered by its high reactivity and propensity to over-oxidize organic molecules, including most solvents. This challenge can largely be mitigated by adsorbing both substrate and ozone onto silica gel, providing a solvent-free oxidation method. In this manuscript, a flow-based packed bed reactor approach is described that provides exceptional control of reaction temperature and time of this reaction to achieve improved control and chemoselectivity over this challenging reaction. A powerful method to oxidize primary amines into nitroalkanes is achieved. Examples of pyridine, C–H bond, and arene oxidations are also demonstrated, confirming the system is generalizable to diverse ozone-mediated processes.
Get in touch
For more information on flow chemistry systems and services please use the contact methods below.
Call us on +44 (0)1284 728659 or Email us
Resource Centre
R-Series

The Vapourtec R-Series is, quite simply, unrivalled for flow chemistry
- Flexible |
- Precise |
- Automatable
The R-Series is undoubtedly the most versatile, modular flow chemistry system available today.
E-Series

The Vapourtec E-Series is the perfect introductory system for flow chemistry
- Robust |
- Easy to use |
- Affordable
The E-Series is a robust and affordable, entry level flow chemistry system designed for reliability and ease of use.