Continuous Processing of Concentrated Organolithiums in Flow Using Static and Dynamic Spinning Disc Reactor Technologies

    • Ulrich Wietelmanna
    • Johannes Klösenera
    • Peter Rittmeyera
    • Stefan Schnipperinga
    • Henk Batsb
    • Wouter Stamb
    • aAlbemarle Germany GmbH, Industrial Park Hoechst, D-65926 Frankfurt am Main, Germany
    • bFlowid, Achtseweg Zuid 157C, NL-5651 GW Eindhoven, The Netherlands

    Organometallic reactions involving highly reactive organolithium reagents are widely used in organic synthesis. However, the use of such organometallics in batch mode on a pilot and industrial scale is challenging for safety reasons and frequently requires expensive cryogenic process conditions. A change to continuous processing in flow mode can provide major advantages for process safety and economics. In this study, we compare static and dynamic flow reactor technologies for two important organolithium (butyllithium and hexyllithium)-enabled transformations: deprotonations and bromine/lithium exchange reactions. Using higher concentrated (≥3 M) butyllithium (BuLi) solutions, that is, reaction mixtures with reduced hydrocarbon content, decreases the risk of reactor fouling and allows for increased space/time yields. In the flow mode, the observed reactions could be carried out under more convenient conditions, that is, at higher temperatures compared to the batch mode, and the deprotonation reaction even at ambient temperature instead of −78 °C. The formation of precipitates with the risk of clogging can be further reduced by changing from static flow to dynamic spinning disc reactor technology. The SpinPro reactor system from Flowid has been identified to ensure robust performance, as it tolerates salt precipitations and can provide excellent mass transfer conditions. Flow process technology using concentrated organolithium products can provide unique benefits for the manufacturing of pharmaceutical intermediates, agrochemical products, and specialty chemicals.

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us