Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning
John H. Dunlapab, Jeffrey G. Ethierab, Amelia A. Putnam-Neeb ac, Sanjay Iyerd, Shao-Xiong Lennon Luoe, Haosheng Fenge, Jose Antonio Garrido Torresf, Abigail G. Doyleg, Timothy M. Swagere, Richard A. Vaiaa, Peter Miraua, Christopher A. Crousea and Luke A. Baldwina
- aMaterials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA.
- bUES, Inc., Dayton, OH 45431, USA
- cNational Research Council Research Associate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
- dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- eDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- fDepartment of Chemistry, Princeton University, Princeton, NJ 08544, USA
- gDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
Read the publication that featured this abstractWe report a human-in-the-loop implementation of the multi-objective experimental design via a Bayesian optimization platform (EDBO+) towards the optimization of butylpyridinium bromide synthesis under continuous flow conditions. The algorithm simultaneously optimized reaction yield and production rate (or space-time yield) and generated a well defined Pareto front. The versatility of EDBO+ was demonstrated by expanding the reaction space mid-campaign by increasing the upper temperature limit. Incorporation of continuous flow techniques enabled improved control over reaction parameters compared to common batch chemistry processes, while providing a route towards future automated syntheses and improved scalability. To that end, we applied the open-source Python module, nmrglue, for semi-automated nuclear magnetic resonance (NMR) spectroscopy analysis, and compared the acquired outputs against those obtained through manual processing methods from spectra collected on both low-field (60 MHz) and high-field (400 MHz) NMR spectrometers. The EDBO+ based model was retrained with these four different datasets and the resulting Pareto front predictions provided insight into the effect of data analysis on model predictions. Finally, quaternization of poly(4-vinylpyridine) with bromobutane illustrated the extension of continuous flow chemistry to synthesize functional materials.
Get in touch
For more information on flow chemistry systems and services please use the contact methods below.
Call us on +44 (0)1284 728659 or Email us
Resource Centre
R-Series

The Vapourtec R-Series is, quite simply, unrivalled for flow chemistry
- Flexible |
- Precise |
- Automatable
The R-Series is undoubtedly the most versatile, modular flow chemistry system available today.
E-Series

The Vapourtec E-Series is the perfect introductory system for flow chemistry
- Robust |
- Easy to use |
- Affordable
The E-Series is a robust and affordable, entry level flow chemistry system designed for reliability and ease of use.