Manganese-Catalyzed Synthesis of Quaternary Peroxides: Application in Catalytic Deperoxidation and Rearrangement Reactions

    • Akash S. Ubale
    • Moreshwar B. Chaudhari
    • Moseen A. Shaikh
    • Boopathy Gnanaprakasam*
    • Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.

    Highly efficient, selective and direct C-H peroxidation of 9-substituted fluorenes has been achieved using Mn-2,2’-bipyridine-catalyst via radical-radical cross-coupling. Moreover, this method effectively promote the vicinal bis-peroxidation of sterically hindered various substituted arylidene-9H-fluorene/arylideneindolin-2-one derivatives to afford highly substituted bisperoxides with high selectivity over the oxidative cleavage of C=C bond that usually form ketone of aldehyde. Furthermore, a new approach for the synthesis of (Z)-6-benzylidene-6H-benzo[c]chromene has been achieved via an acid-catalyzed skeletal rearrangement of these peroxides. For the first time, unlike O-O bond cleavage, reductive C-O bond cleavage in peroxides using Pd-catalyst and H2 is described which enables the reversible reaction to afford exclusively deperoxidised products. A detailed mechanism for peroxidation, molecular rearrangement and deperoxidation has been proposed with preliminary experimental evidences.

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us

    Request a quote