The following (non-exhaustive) list of papers shows peer reviewed work that has been published using the Vapourtec R-Series and E-Series flow chemistry systems. As new work is continually published, please check on our website for updates.

C(sp3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow
Gabriele Laudadio1*, Yuchao Deng1,2,3,*, Klaas van der Wal1, Davide Ravelli1, Manuel Nuño5, Maurizio Fagnoni4, Duncan Guthrie5, Yuhan Sun2,3, Timothy Noël1,∗

1Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands.
2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.
3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China.
4PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy.
5Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk IP28 6TS, UK.

https://science.sciencemag.org/content/369/6499/92

Preparation of Diorganomagnesium Reagents by Halogen–Lithium Exchange of Functionalized Heteroaryl Halides and Subsequent in situ Trapping with MgCl2·LiCl in Continuous Flow
Rodolfo Hideki Vicente Nishimuraa, Niels Weidmannb, Paul Knochelab

aColegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, Avenue José de Sá Maniçoba, Petrolina, 56304-205 Petrolina, Brazil
bLudwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, 81377 München, Germany

Process of Manufacturing Surfactants and Lubricants
Assingnees: Dow Global Technologies LLC (Midland, MI, US), Northwestern University (Evaston, IL, US)

Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel–Hauser amides, and magnesium alkoxides
Mateo Berton1, Kevin Sheehan2, Andrea Adamo2, D. Tyler McQuade1

1Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St., Box 980100, Richmond, VA 23219, USA
2Zaiput Flow Technologies, 300 2nd Avenue, Waltham, MA 02451, USA

https://www.beilstein-journals.org/bjoc/articles/16/115

Flow Chemistry System for Carbohydrate Analysis by Rapid Labeling of Saccharides after Glycan Hydrolysis
Wei-Ting Hung1, Yi-Ting Chen1, Chung-Hsuan Chen1, Yuan Chuan Lee2, Jim-Min Fang1, 3, Wen-Bin Yang1

1The Genomics Research Center, Academia Sinica, Taipei
2Department of Biology, Johns Hopkins University, Baltimore, MD, USA
3Department of Chemistry, National Taiwan University, Taipei

https://journals.sagepub.com/doi/full/10.1177/2472630320924620

Continuous-Flow Approach for the Multi-Gram Scale Synthesis of C2-Alkyl- or β-Amino Functionalized 1,3-Dicarbonyl Derivatives and Ondansetron Drug Using 1,3-Dicarbonyls
Nirmala Mohant, Krishna Nair, Dasharath Vambar Sutar, Boopathy Gnanaprakasam∗
Preparation of Mono- and Diisocyanates in Flow from Renewable Carboxylic Acids
Michael D. Burkar1, Thien An Phung Hai1, Laurent J. S. De Backer2, Nicholas D. P. Cosford2
1Department of Chemistry and Biochemistry and The California Center for Algae Biotechnology, University of California, San Diego, California 92093-0358, United States
2Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States

https://pubs.acs.org/doi/full/10.1021/acs.oprd.0c00167

Accelerating Electrochemical Synthesis through Automated Flow: Efficient Synthesis of Chalcogenophosphites
Nasser Amri, Thomas Wirth*
School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK

Rearrangement of 3-Hydroxyazetidines into 2-Oxazolines
Ian R. Baxendale1, Michele Ruggeri1, Amanda W. Dombrowski2, Stevan W. Djuric3
1Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom
2Discovery Chemistry and Technology AbbVie Inc., North Chicago, Illinois 60064, United States
3Discovery Chemistry and Technology Consulting LLC, New Bern, North Carolina 28562, United States

https://pubs.acs.org/doi/abs/10.1021/acs.joc.0c00656

Selective DIBAL-H Monoreduction of a Diester Using Continuous Flow Chemistry: From Benchtop to Kilo Lab
Nick Uhlig1, Andrew Martins1, Detian Gao2
1Process Development, Gilead Alberta ULC, Edmonton, Alberta T6S 1A1, Canada
2Commercial API Process Optimization, Gilead Alberta ULC, Edmonton, Alberta T6S 1A1, Canada

https://pubs.acs.org/doi/abs/10.1021/acs.oprd.0c00158

Flow Reactor Synthesis of Bio-Based Polyol from Soybean Oil for the Production of Rigid Polyurethane Foam
Kai Guo1, Zheng Fang2, Wei He2, Peng Kang3, Jingying Hao4, Hao Wu2, Yuchen Zhu5
1College of Biotechnology and Pharmaceutical Engineering and State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
2College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
3SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
4The Research Institute of SINOPEC Co., Ltd, Tianjin Branch, Tianjin 10000, China
5School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China

https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c01175

Ir/Ni Photoredox Dual Catalysis with Heterogeneous Base Enabled by an Oscillatory Plug Flow Photoreactor
Wouter Debrouwer,a*, Wim Kimpea, Ruben Dangreau,a, Kevin Huvaere,a, Hannes P.L. Gemoets,b, Milad Mottaghi,c, Simon Kuhn,c, Koen Van Akenab
aEcoSynth, Industrielaan 12, 9800 Deinze, Belgium
bCreaflow, Industrielaan 12, 9800 Deinze, Belgium
cDepartment of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium

https://pubs.acs.org/doi/abs/10.1021/acs.oprd.0c00150

Visible Light Mediated N-Desulfonylation of N-Heterocycles using a Heteroleptic Copper (I) Complex as a Photocatalyst
Cameron J. Hunter, Michael J. Boyd, Gregory D. May, Robert Fimognari*
Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States

https://pubs.acs.org/doi/abs/10.1021/acs.joc.0c00983
A Flow Process Built upon a Batch Foundation—Preparation of a Key Amino Alcohol Intermediate via Multistage Continuous Synthesis
†Chemical Development, API Chemistry, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States
‡Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
§Chemical Development, API Chemistry, GlaxoSmithKline, Stevenage SG1 2NY, U.K.
∥Chemical Development, Product and Process Engineering, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States

Streamlined Synthesis of Fluoroquinolones
Gupton, Frank B. (Midlothian, VA, US) Tosso, Perrer N. (Glen Allen, VA, US)
VIRGINIA COMMONWEALTH UNIVERSITY (Richmond, VA, US)

Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates
Saurabh Anand, Sandhya Mardhekar, Rakesh Raigawali, Nirmala Mohanta, Prashant Jain, Chethan D. Shanthamurthy & Boopathy Gnanaprakasam* & Raghavendra Kikkeri*
Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India

Development of a Large-Scale Cyanation Process Using Continuous Flow Chemistry en Route to the Synthesis of Remdesivir
Tiago Vieira1*, Andrew C. Stevens1*, Andrei Chtchemelinine2, Detian Gao1, Pavel Badalov1, Lars Heumann2
1Gilead Alberta ULC, 1021 Hayter Road, Edmonton, Alberta T6S 1A1, Canada
2Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, California 94404, United States

Tropylium-promoted prenylation reactions of phenols in continuous flow
Klaus Omoregbe1,2, Kevin N. H. Luč2, An H. Dinh1, Thanh Vinh Nguyen1
1School of Chemistry, University of New South Wales, Sydney, Australia
2School of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany

Making electrochemistry easily accessible to the synthetic chemist
Christiane Schotten*a, Thomas P. Nicholls*a, Richard A. Bourneb, Nikil Kapurc, Bao N. Nguyenb, Charlotte E. Willans*a
a School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
b School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
c School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

Scale-up and Optimization of a Continuous Flow Synthesis of an α-Thio-β-chloroacrylamide
Olga C. Dennehy1, Denis Lynch1, Stuart G. Collins1*, Anita R. Maguire1*, Humphrey A. Moynihan1*
1 School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland.
2 School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland

Automated Glycan Assembly in a Variable-Bed Flow Reactor Provides Insights into Oligosaccharide–Resin Interactions
Eric T. Sletten1, José Danglad-Flores1, Manuel Nuño2, Duncan Guthrie2 & Peter H. Seeberger1
1Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam,
Photocatalytic α-Tertiary Amine Synthesis via C–H Alkylation of Unmasked Primary Amines

aCentre for Sustainable Chemical Technologies, 1 South, University of Bath, Claverton Down, Bath, BA2 7AY (UK)
bDepartment of Chemistry, 1 South, University of Bath, Claverton Down, Bath, BA2 7AY (UK)
cMedicines Design, GSK Medicines Research Centre, Gunnels Wood Rd, Stevenage, SG1 2NY (UK)

Electrochemistry in continuous systems
Thomas P. Nicholls, Christiane Schotten & Charlotte E. Willans
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK

Dynamic Crystallization Pathways of Polymorphic Pharmaceuticals Revealed in Segmented Flow with Inline Powder XRD
Mark Alan Levenstein1, 2, Lois E Wayment1, 4, 5, C. Daniel Scott1, 6, Ruth A Lunt1, 6, Pierre-Baptiste Flandrin3, Sarah Day5, Chiu Tang5, Chick C. Wilson2, Fiona C. Meldrum3 & Nikil Kapur1

1School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
2School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
3Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
4CMAC Future Manufacturing Hub, University of Bath, Claverton Down, Bath BA2 7AY, UK
5Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
6Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK

A Metallaphotoredox Method for the Expansion of Benzyl SAR on Electron-Deficient Amines
Meghan D. Shea, Umar Faruk Mansoor & Brett A. Hopkins*
Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States

Management of the Heat of Reaction under Continuous Flow Conditions Using In-Line Monitoring Technologies
Masahiro Hosoya, Shogo Nishijima & Noriyuki Kurose
API R&D Laboratory, CMC R&D Division, Shionogi and Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan

Use of Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: the translation of a photocatalytic C-N cross-coupling from lab scale to multikilogram scale
Emily B. Corcoran*a, Jonathan P. McMullen*b, François Lévesqueb, Michael K. Wismerc, John R. Naberb

aProcess Research & Development, Merck & Co., Inc., Boston, MA 02115 (USA)
bProcess Research & Development, Merck & Co., Inc., Rahway, NJ 07065 (USA)
cScientific Engineering & Design, Merck & Co., Inc., Kenilworth, NJ 07033 (USA)

Disposable Cartridge Concept for On-Demand Synthesis of Turbo Grignards, Knochel-Hauser Amides and Magnesium Alkoxides
Mateo Berton1*, Kevin Sheehan2, Andrea Adamo2, Tyler McQuade1

1Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St, Box 980100, Richmond, VA 23219, USA
A Flow Process Built upon a Batch Foundation—Preparation of a Key Amino Alcohol Intermediate via Multistage Continuous Synthesis

Chemical Development, API Chemistry, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States

Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada

Chemical Development, API Chemistry, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States

Chemical Development, Product and Process Engineering, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States

https://www.beilstein-journals.org/xiv/preprints/202040

A Continuous Flow Sulfuryl Chloride Based Reaction – Synthesis of a Key Intermediate in a New Route Toward Emtricitabine and Lamivudine

Juliana M. de Souza, Mateo Berton, David R. Snead*, D. Tyler McQuade

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284-3068, USA.

https://pubs.acs.org/doi/full/10.1021/acs.oprd.9b00478

Automated radial synthesis of organic molecules

Sourav Chatterjee 1, Mara Guidi 1,2, Peter H. Seeberger 1,2 & Kerry Gilmore 1

1 Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany

2 Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany

https://pubs.acs.org/doi/10.1021/acs.oprd.0c00146

An Enzymatic Flow-Based Preparative Route to Vidarabine

Lucia Tamborini1, Clelia Previtali 1, Francesca Annunziata 1, Teodora Bavaro 2, Marco Terreni 2, Enrica Calleri 2, Francesca Rinaldi 2, Andrea Pinto 3, Giovanna Speranza 4, Daniela Ubiali 2* & Paola Conti 1

1 Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy

2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy

3 Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milano, Italy

4 Department of Chemistry, University of Milan, via Golgi 19, 20133 Milano, Italy

https://www.mdpi.com/1420-3049/25/5/1223

Continuous-flow synthesis and application of polymer-supported BODIPY Photosensitisers for the generation of singlet oxygen; process optimised by in-line NMR spectroscopy

Christopher G. Thomson 1, Callum M. S. Jones 2, Georgina Rosair 1, David Ellis, Jose Marques-Hueso 2, Ai-Lan Lee 1 & Filipe Vilela 1

1 Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK

2 Institute of Sensors, Signals and Systems, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China

https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b06602

Amino Alcohol Acrylonitriles as Activators of the Aryl hydrocarbon Receptor Pathway, An Unexpected MTT Phenotypic
Screening Outcome
Jennifer Baker1, Cecilia C Russel1, Jayne Gilbert2, Jennette Sakoff2, Adam McCluskey1
1The University of Newcastle, Department of Chemistry, University Drive, Callaghan, 2308 Newcastle, AUSTRALIA
2Calvary Mater Hospital, Medical Oncology, Edith Street, Waratah, 2308 Newcastle, AUSTRALIA

Continuous flow aminolysis under high temperature and pressure
Bryan Li, Scott Bader, Steve M. Guinness, Sally Gut Ruggeri, Cheryl M. Hayward, Steve Hoagland, John Lucas, Ruizhi Li, David Limburg, J. Christopher McWilliams, Jeffrey Raggon & John Van Alsten
Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
Celgene Corporation, 556 Morris Ave, Summit, NJ, USA
Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
Rhodes Technologies, 498 Washington Street, Coventry, RI, USA

Continuous Flow Photochemistry for the Preparation of Bioactive Molecules
Mara Di Filippo, Cormac Bracken and Marcus Baumann*
School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
https://www.mdpi.com/1420-3049/25/2/356

Development of a Continuous Flow Photoisomerization Reaction Converting Isoxazoles into Diverse Oxazole Products
Cormac Bracken, Marcus Baumann*
School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
https://pubs.acs.org/doi/abs/10.1021/acs.joc.9b03399

Continuous-Flow Biocatalytic Process for the Synthesis of the Best Stereoisomers of the Commercial Fragrances Leather Cyclohexanol (4-Isopropylcyclohexanol) and Woody Acetate (4-(Tert-Butyl)Cyclohexyl Acetate)
Francesca Tentori1,†, Elisabetta Brenna1,2,‡, Michele Crottì1, Giuseppe Pedrocchi-Fantoni2, Maria Chiara Ghezzi1 and Davide Tessaro1
1 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
2 Istituto di Scienze e Tecnologie Chimiche – CNR, Via Mancinelli 7, 20131 Milano, Italy
https://www.mdpi.com/2073-4344/10/1/102

Visible Light-Mediated (Hetero)aryl Amination Using Ni(II) Salts and Photoredox Catalysis in Flow: A Synthesis of Tetracaine
Boyoung Y. Park, Michael T. Pirnot and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
https://pubs.acs.org/doi/abs/10.1021/acs.joc.9b03107

In-Line Purification: A Key Component to Facilitate Drug Synthesis and Process Development in Medicinal Chemistry
Nopphon Weeranoppanant, Nopphon Weeranoppanant
Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen Road, Muang, Chonburi 02131, Thailand
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210 Thailand
https://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.9b00491

In-line purification: A key component to facilitate drug synthesis and process development in medicinal chemistry
Nopphon Weeranoppanant1,2*, Andrea Adamo3*
1 Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen Road, Muang, Chonburi 02131, Thailand
2 School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210 Thailand
3 Zaiput Flow Technologies, 300 Second Avenue, Waltham, Massachusetts 02451, United States
https://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.9b00491

Use of Immobilized Amine Transaminase from Vibrio fluvialis under Flow Conditions for the Synthesis of (S)-1-(5-Fluoropyrimidin-2-yl)-ethanamine

Flow Chemistry Publications - 6 -
www.vapourtec.co.uk/publications
Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides
Zachary G. Brill,*† Casey B. Ritts, † Umar Faruk Mansoor, Nunzio Sciammetta
Department of Discovery Chemistry, MRL, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115 USA.

Continuous Flow Synthesis of Methyl Oximino Acetoacetate: Accessing Greener Purification Methods with Inline Liquid-Liquid Extraction and Membrane Separation Technology
René Lebl, Trevor Murray, Andrea Adamo, David Cantillo, C. Oliver Kappe

Cellulose fast pyrolysis for platform chemicals: assessment of potential targets and suitable reactor technology
Anurag Parihar, Sankar Bhattacharya
Department of Chemical Engineering, Monash University, Clayton, VIC, Australia

Continuous and green microflow synthesis of azobenzene compounds catalyzed by consecutively prepared tetrahedron CuBr
Hong Qin¹, Chengkou Liu¹, Niuniu Lv¹, Wei He¹, Jingjing Meng², Zheng Fang², Kai Guo²
¹ College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, China
² State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China

Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks
Mónica Guberman, Bartholomäus Pieber, Peter H. Seeberger*
Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany

A Practical Method for Continuous Production of sp3-Rich Compounds from (Hetero)Aryl Halides and Redox-Active Esters
Dr. Eiichi Watanabe a, Dr. Yiding Chen b, Oliver May a, Prof. Steven V. Ley b
a New Path Molecular Ltd. Building 580, Babraham Research Campus, Cambridge (UK)
b Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge (UK)

Metal-Free Visible-Light-Mediated Hydrotrifluoromethylation of Unactivated Alkenes and Alkynes in Continuous Flow
Anne-Laure Barthelemy, Guillaume Dagoussset, Emmanuel Magnier
Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, 78035 Versailles Cedex, France

Stereospecific Amination of Mesylated Cyclobutanol in Continuous Flow
Matthieu Tissot, Jérôme Jacq, Patrick Pasau
UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
Stereospecific Amination of Mesylated Cyclobutanol in Continuous Flow
Matthieu Tissot, Jérôme Jacq, Patrick Pasau
UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
https://pubs.acs.org/doi/abs/10.1021/acs.oprd.9b00381

A new formulation for symbolic regression to identify physico-chemical laws from experimental data
Pascal Neumannab, Liwei Caob, Danilo Russob, Vassilios S. Vassiliadisb, Alexei A. Lapkinbc
a Aachener Verfahrenstechnik – Process Systems Engineering, RWTH Aachen University, Aachen, Germany
b Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
c Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, 138602 Singapore, Singapore

Real-Time Monitoring of Solid-Phase Peptide Synthesis Using a Variable Bed Flow Reactor
Eric T. Slettena, Manuel Nunoa, Duncan Guthriebb, Peter Seebergera,c
aDepartment of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
bVapourtec Ltd, Park Farm Business Centre, Fornham St Genevieve, Bury St Edmunds, Suffolk IP28 6TS, U.K
cDepartment of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
https://pubs.rsc.org/en/content/articlelanding/2019/CC/C9CC08421E#!divAbstract

Electroorganic Synthesis under Flow Conditions
Mohamed Elsherbinib, Thomas Wirth
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
https://pubs.acs.org/doi/abs/10.1021/acs.accounts.9b00497

Lilly Research Award Program (LRAP): A Successful Academia–Industry Partnership Model in the Context of Flow Chemistry for Drug Discovery
Mateos, Carlos
https://www.ingentaconnect.com/content/scs/chimia/2019/00000073/00000010/art00003

In situ non-invasive Raman spectroscopic characterisation of succinic acid polymorphism during segmented flow crystallisation
Anuradha R. Pallipuratha, Pierre-Baptiste Flandrina, Lois E. Waymentab, c, Chick C. Wilsonac, b, Karen Robertsona
department of Chemistry, University of Bath, Claverton Down, BA2 7AY, UK
CMAC Future Manufacturing Hub, University of Bath, Claverton Down, Bath BA2 7AY, UK
c.Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
https://pubs.rsc.org/en/content/articlelanding/2019/me/c9me00103d#!divAbstract

Microfluidic synthesis of fatty acid esters: Integration of dynamic combinatorial chemistry and scale effect
Wei Hea, Yuan Gaoa, Guiqin Zhua, Hao Wu, Zheng Fangb, Kai Guoa
acollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China

Continuous Flow Aminolysis of RAFT Polymers Using Multistep Processing and Inline Analysis
CSIRO Manufacturing Flagship, Bag 33, Clayton South, Victoria 3169, Australia
https://pubs.acs.org/doi/10.1021/ma501628f

Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction
Sonia De Angelis1, 2, Paolo Celestini3, Rosa Purgatorio3, Leonardo Degennaro1, 2, Gabriele Rebuzzini9, Renzo Luisi1, 2, Claudia Carlucci1, 2
1Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, Bari, Italy

Flow Chemistry Publications - 8 - www.vapourtec.co.uk/publications
Photochemical flow synthesis of 3-hydroxyazetidines
Michele Ruggeri 1, Amanda Worthy Dombrowski 2, Stevan W. Djuric 2, Ian Richard Baxendale 1
1 University of Durham, Department of Chemistry, South Road, DH1 3LE Durham, UNITED KINGDOM
2 AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL 60064 Chicago, UNITED STATES

Flow nanoprecipitation of size-controlled D-leucine nanoparticles for spray-drying formulations
Bruno Cerra, Gabriele Mosca, Maurizio Ricci, Aurélie Schoubben and Antimo Gioiello
https://pubs.rsc.org/en/content/articlelanding/2019/re/c9re00242a/unauth#!divAbstract

Visible-Light-Mediated Cross-Couplings and C–H Activation via Dual Photoredox/Transition-Metal Catalysis in Continuous-Flow Processes
Soo Dong Kim, Jonghyun Lee, Nam-Jung Kim, Boyoung Park
Kyung Hee University, Department of Pharmacy, Kyungheedaero 26, 02447 Seoul, Republic of Korea

A flow platform for degradation-free CuAAC bioconjugation
Marine Z. C. Hatit1, Linus F. Reichenbach1, John M. Tobin2, Filipe Vilela2, Glenn A. Burley3, Allan J. B. Watson3
1Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
2Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
3School of Chemistry, University of St Andrews, North Haugh, St Andrews, UK
https://www.nature.com/articles/s41467-018-06551-0

Batch Versus Flow Lithiation-Substitution of 1,3,4-Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry
Jeff Y. F. Wong, John M. Tobin, Filipe Vilela and Graeme Barker*
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH11 4AS, Scotland, UK.

A Photoredox Coupling Reaction of Benzylboronic Esters and Carbonyl Compounds in Batch and Flow
Yiding Chen†, Oliver May†, David C. Blakemore‡ and Steven V. Ley†*
† Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
‡ Medicine Design, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
https://pubs.acs.org/doi/full/10.1021/acs.orglett.9b02307

Heumann Indole Flow Chemistry Process
Cynthia Crifar, Fenja Leena Därker, Sacha Nguyen Thanh, Vanessa Kairouz, William D. Lubell
https://pubs.acs.org/doi/abs/10.1021/acs.joc.9b01516

Integrated plug flow synthesis and crystallisation of pyrazinamide
C. Daniel Scott,* Ricardo Labes, Martin Depardieu,† Claudio Battilocchio,§ Matthew G. Davidson, a Steven V. Ley, b Chick C. Wilson ad and Karen Robertson*†
 a Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, UK
 b Department of Chemistry, University of Cambridge, UK
 c Department of Chemistry, University of Bath, UK
 d EPSRC Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Bath, UK
https://pubs.rsc.org/en/content/articlelanding/2018/re/c8re00087e#IdivAbstract

Conjugated porous polymers for photocatalytic applications
Y. L. Wong a, J. M. Tobin a, Z. Xu a, F. Vilela b
 a Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
 b School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
https://pubs.rsc.org/en/content/articlelanding/2018/ta/c6ta07697a#IdivAbstract

In-Flow Flash Nanoprecipitation of Size-Controlled D-Leucine Nanoparticles for Spray-Drying Formulations
Bruno Cerra, Gabriele Mosca, Maurizio Ricci, Aurélie Schoubben, and Antimo Gioiello
Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy
https://chemrxiv.org/articles/In-Flow_Flash_Nanoprecipitation_of_Size-Controlled_D-Leucine_Nanoparticles_for_Spray-Drying_Formulations/8074508

The Role of Single-Atom Catalysis in Potentially Disruptive Technologies
Mario Pagliaro
Instituto per lo Studio dei Materiali Nanostutturati, CNR, Palermo, Italy

A Simple and Efficient Flow Preparation of Pyocyanin a Virulence Factor of Pseudomonas Aeruginosa
Frederik B. Mortzfeld, Jörg Pietruska, and Ian Baxendale
aDepartment of Chemistry, University of Durham, South Road, Durham, Durham, DH1 3LE, UK.
bInstitut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52425, Jülich, Deutschland.

Electrophilic Bromination in Flow: A safe and Sustainable Alternative to the Use of Molecular Bromine in Batch
Reinout Van Kerrebroeck, Pieter Naert, Thomas S. A. Heugebaert, Matthias D’hooghe, and Christian V. Stevens
SynBioC research goup, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
https://www.mdpi.com/1420-3049/24/11/2116/htm

Continuous process intensification for synthesis and formulation in the pharmaceutical industry
Aliaa I. Shallana, Craig Priest
Future industries institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
School of Engineering, University of South Australia, Mawson Lakes, SA, 5095, Australia

Continuous flow chemo-enzymatic Baeyer-Villiger oxidation with superactive and extra-extra stable enzyme/carbon nanotube catalytic: an efficient upgrade from batch to flow
Anna Szelwicka, Przemysław Zawadzki, Magdalena Sitko, Sławomir Boncel, Wojciech Czardybon, Anna Chrobok
Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
Selvita S.A., Bobrzynskiego 14, 30-348 Cracow, Poland
Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
https://pubs.acs.org/doi/full/10.1021/acs.oprd.9b00132

Synthetic route design of AZD4635, an A2AR antagonist
Mairi M. Littleson, Andrew D. Campbell, Adam Clarke, Mark Dow, Gareth Ensor, Matthew C. Evans, Adam Herring, Bethany A. Jackson, Lucinda V. Jackson, Staffan Karlsson, David J. Klauber, Danny H. Legg, Kevin W. Leslie, Stefan Moravčík, Chris D. Parsons, Thomas O. Ronson, Rebecca E. Meadows
Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K.
Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K.
https://pubs.acs.org/doi/full/10.1021/acs.oprd.9b00171

Continuous flow knitting of a triptycene hypercrosslinked polymer
Cher Hon Lau, Tian-dan Lu, Shi-Peng Sun, Xianfeng Chen, Mariolino Carta, and Daniel M. Dawson
School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech. University, Nanjing 210009, China
Department of Chemistry, College of Science, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
School of Chemistry, EaSTCHEM and Centre of Magnetic Resonance, University of St. Andrews, KY16 9ST, UK
https://pubs.acs.org/doi/full/10.1021/acs.oprd.9b00171
Transaminase-catalyzed continuous synthesis of biogenic aldehydes
Martina L. Contente and Francesca Paradisi
a School of Chemistry, University of Nottingham, University Park, Nottingham, NG7, 2RD, United Kingdom
b Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

A Novel and Efficient Continuous-Flow Route To Prepare Trifluoromethylated N-Fused Heterocycles for Drug Discovery and Pharmaceutical Manufacturing
Lara Amini-Rentsch, Ennio Vanoli, Sylvia Richard-Bildstein, Roger Marti, Gianvito Vile
Idorsia Pharmaceuticals Ltd., Chemistry Technologies & Lead Discovery, Department of Drug Discovery Chemistry, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
University of Applied Sciences Western Switzerland (HES-SO), Haute Ecole d’Ingénierie et d’Architecture de Fribourg, Institute of Chemical Technology, 80 boulevard de Pérolles, CH-1700 Fribourg, Switzerland
https://pubs.acs.org/doi/10.1021/acs.iecr.9b01906

Flow Hydrodediazoniation of Aromatic Heterocycles
Liesa Röder, Alexander J. Nicholls and Ian R. Baxendale
1 Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
2 Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK

Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications
Dr Mohamed Elsherbin, Bethan Winterson, Haifa Alharbi, Ana A. Folgueiras-Amador, Clina Gnot, and Thomas Wirth
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK

Definitive screening designs for multistep kinetic models in flow
Christopher A. Hone, Alistair Boyd, Anne O’Kearney-McMullan, Richard A. Bourne, and Frans L. Muller
a Institute of Process Research and Development (iPRD), School of Chemistry and School of Chemical and Process Engineering, University of Leeds, LS2 9JT, UK.
b Global Development, AstraZeneca, Macclesfield, Cheshire, UK, SK10 2NA, UK.
https://pubs.rsc.org/en/content/articlelanding/2019/re/c9re00180h/unauth#idivAbstract

Visible light-promoted Fe-catalyzed Csp2-Csp3 Kumada cross-coupling in flow
Xiao-Jing Wei, Irini Abdia, Carlo Sambiagio, Chenfei Li, Eli Zysman-Colman, Jesus Alcazar, Timothy Noel
Department of Chemical Engineering, Micro Flow Chemistry and Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands

Experimental Methods in Chemical Engineering: Micro-Reactors
Arturo Macchi, Patrick Plouffe, Gregory S. Patience, Dominique M. Roberge
a Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, K1N 6N5 Canada
b Department of Chemical Engineering - Ecole Polytechnique de Montreal, QC, H3C 3A7 Canada
c Chemical Manufacturing Technologies, Lonza AG, CH-, 3930 Visp, Switzerland

Continuous Flow Synthesis of Highly Substituted Tetrahydrofurans
Patrick Hoffmeyer, Christoph Schneider
Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, D, -04103 Leipzig Germany

Peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow using an eco-friendly ethyl acetate solvent
Moreshwar B. Chaudhari, Nirmala Mohanta, Akanksha M. Pandey, Madhusoodhanan Vandana, Krishnanpal Karmody and Boopathi Gnanaprakashas
a Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
https://pubs.rsc.org/en/content/articlelanding/2019/cc/c9cc03731d#idivAbstract
Rapid and Multigram Synthesis of Vinylogous Esters under Continuous Flow: An Access to Transetherification and Reverse Reaction of Vinylogous Esters
Nirmala Mohanta, Moreshwar B. Chaudhari, Naveen Kumar Digrawal, Boopathy Gnanaprakasam*
Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
https://pubs.acs.org/doi/abs/10.1021/acs.oprd.9b00067

Continuous manufacturing – the Green Chemistry promise?
Luke Rogers and Klavs F. Jensen
Department of Chemical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
https://pubs.rsc.org/en/content/articlepdf/2019/gc/c9gc00773c

Practical and regioselective amination of arenes using alkyl amines
Alessandro Ruffoni 1, Fabio Juliá 1, Thomas D. Svejstrup 1, Alastair J. McMillan 1, James J. Douglas 2 & Daniele Leonori 1
1 School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
2 Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, UK
https://www.nature.com/articles/s41557-019-0254-5#Sec216

The Influence of Residence Time Distribution on Continuous-Flow Polymerization
Marcus H. Reis, Travis P. Varner, Frank A. Leibfarth*
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
https://chemrxiv.org/articles/The_Influence_of_Residence_Time_Distribution_on_Continuous_Flow_Polymerization/772616

Additive manufacturing of photoactive polymers for visible light harvesting
Adilet Zhakeyevac, John Tobinb, Huizhi Wangb, Filipe Vilelaa, Jin Xuaac
a School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
b Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington Campus, London, SW7 2AZ, UK
c Department of Chemical Engineering, Loughborough University, Loughborough, UK

Modeling and Design of a Flow-Microreactor-Based Process for Synthesizing Ionic Liquids
Yuichi Nakahara*†, Bert Metten‡, Osamu Tonomurax, Alichiro Nagakix, Shinji Hasebe§, and Jun-ichi Yoshidax
† New Frontiers Research Group, Frontier Research Laboratories, Institute For Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
‡ Ajinomoto Bio Pharma Services, Coopallanaan 91, B-9230 Wetteren, Belgium
§ Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie 510-0294, Japan
https://pubs.acs.org/doi/full/10.1021/acs.oprd.8b00436

Synthesis of a Renewable Macro cyclic Musk: Evaluation of Batch, Microwave, and Continuous Flow Strategies
Émilie Morín§, Johann Sosoe§, Michaël Raymond§, Benjamin Amorelli***, Richard M. Boden†, and Shawn K. Collins*§
§ Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, Canada H3C 3J7
† Research & Development, International Flavors & Fragrances Inc., 1515 State Route 36, Union Beach, New Jersey, 07735, United States
https://pubs.acs.org/doi/abs/10.1021/acs.oprd.8b00450

Bioprocess Intensification Using Flow Reactors: Stereoselective Oxidation of Achiral 1,3-diols with Immobilized Acetobacter Aceti
Valerio De Vitis 1, Federica Dall’Oglio 2, Francesca Tentori 3, Martina Letizia Contente 4, Diego Romano 1, Elisabetta Brenna 1,
Lucia Tamborini2* and Francesco Molinari1*
1 Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
2 Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
3 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy
4 School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Reversible chemoselective transesterification of vinylogous esters using Fe-catalyst under additive free conditions
Nenavath Parvathalu, Sandip G. Agalave, Nirmala Mohanta and Boopathy Gnanaprakasam*
Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India

https://pubs.rsc.org/en/content/articlelanding/2019/ob/c9ob00307j/unauth#!divAbstract

Investigation of a Weak Temperature–Rate Relationship in the Carbamoylation of a Barbituric Acid Pharmaceutical Intermediate
Alexander G. O’Brien*†, Yangmu Chloe Liu*†, Mark J. Hughes†, John Jin Lim†, Neil S. Hodnett†, and Nicholas Falco§
† GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
§ GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom

https://pubs.acs.org/doi/abs/10.1021/acs.joc.9b00411

Rapid and Multigram Synthesis of Vinylogous Esters under Continuous Flow: An Access to Transesterification and Reverse Reaction of Vinylogous Esters
Nirmala Mohanta, Moreshwar B. Chaudhari, Naveen Kumar Digrawal, and Boopathy Gnanaprakasam*
Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India

https://pubs.acs.org/doi/abs/10.1021/acs.oprd.9b00067

Protection-Group-Free Synthesis of Sequence-Defined Macromolecules via Precision λ-Orthogonal Photochemistry
Waldemar Konrad, Christian Fengler, Sarrah Putwa, and Christopher Barner-Kowollik*
Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD, 4000 Brisbane, Australia

Decarboxylative Intramolecular Arene Alkylation Using N-(Acyloxy)phthalimides, an Organic Photocatalyst, and Visible Light
Trevor C. Sherwood*†, Hai-Yun Xiao*†, Roshan G. Bhaskar†, Eric M. Simmons§, Serge Zaretsky§, Martin P. Rauch§, Robert R. Knowles§, and T. G. Murali Dhar†
† Research and Development, Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
§ Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
‡ Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

https://pubs.acs.org/doi/abs/10.1021/acs.joc.9b00432

Flow Electrochemical Cyclizations via Amidyl Radicals: Easy Access to Cyclic Ureas
Nisar Ahmeda,b†, Aggeliki Vgenopouloua
a School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
b Vapourtec Ltd., 21 Park Farm Business Centre, Bury St Edmunds, IP28 6TS, UK

Efficient Flow Electrochemical Alkoxylation of Pyrrolidine-1-Carbaldehyde
Nasser Amri², Ryan A. Skilton², Duncan Guthrie², Thomas Wirth³*
² School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
³ Vapourtec Ltd., 21 Park Farm Business Centre, Bury St Edmunds, IP28 6TS, UK

Overcoming Water Insolubility in Flow: Enantioselective Hydrolysis of Naproxen Ester
A solid-supported arylboronic acid catalyst for direct amidation
Yihao Du, a Thomas Barber, a Sol Ee Lim, a Henry S. Rzepa, b Ian R. Baxendale a and Andrew Whiting a
a Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
b Department of Chemistry, Imperial College, South Kensington Campus, London, UK

Visible Light-Promoted Beckmann Rearrangements: Separating Sequential Photochemical and Thermal Phenomena in a Continuous Flow Reactor
Yuesu Chen, David Cantillo, C. Oliver Kappe
Karl-Franzens-Universitat Graz, Institute of Chemistry, 8010 Graz, AUSTRIA

A Consolidated and Continuous Synthesis of Ciprofloxacin from a Vinyllogous Cyclopropyl Amide
N. Perrer Tosso, Bimbisar K. Desai, Eliseu De Oliveira, Juekun Wen, John Tomlin, and B. Frank Gupton*
Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23220, United States

Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry
Andrew R Bogdan and Amanda W Dombrowski
Discovery Chemistry and Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States

Towards a Scalable Synthesis of 2-Oxabicyclo[2.2.0]hex-5-en-3-one Using Flow Photochemistry
Jason D. Williams a,b, Yuma Otake a, Guilhem Coussanesc, Iakovos Saridakisc, Nuno Maulide c, C. Oliver Kappe a,b
a Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
b Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
c Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria

Continuous flow processing as a tool for the generation of terpene-derived monomer libraries
Renan Galaverna a, Lucas P. Fernandes a, Duncan L. Browne b and Julio C. Pastre a,a
a Institute of Chemistry, University of Campinas – UNICAMP, Campinas, Brazil
b School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

Rapid Photochemical Reaction Studies under Continuous-flow Conditions in the Vapourtec UV-150 Reactor-A Technical Note
Richard Hunter a, Sam Josland a, Joseph Moore a, Duncan Guthrie b, Mark J. Robertson a; Michael Oelgemöller a
a College of Science and Engineering, James Cook University, Townsville, QLD 4891, Australia
b Vapourtec Ltd, Park Farm Business Centre, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK

Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines
Rachel Grainger a,a, Tom D. Heightman a, Steven V. Ley b, Fabio Lima b,c, Christopher N. Johnson a,a
a Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, UK
b Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
c Novartis Pharma AG, Novartis Campus, 4002 Basel, Switzerland
Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors
T von Keutz 1, 2, D Cantillo 1, 2, CO Kappe 1, 2
1 Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz, Austria
2 Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria

Deprotection of N-Boc Groups Under Continuous Flow High Temperature Conditions
Bryan Li, Ruizhi Li, Peter Dorff, James Christopher McWilliams, Robert M Guinn, Steven M. Guinness, Lu Han, Ke Wang, and Shu Yu
Medicinal Science, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States

A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light
Kaid C. Harper, Eric G. Moschetta, Shailendra V. Bordawekar, Steven J. Wittenberger
Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States

De novo design of organic photocatalysts: bithiophene derivatives for the visible-light induced C-H functionalization of heteroarenes
Cecilia Bottecchia 1, Raul Martin 2, Irini Abdiaj 3, Ettore Crovini 4, Jesus Alcazar 3, Jesus Jorduna, Maria Blesa, Jose Carrillo 2, Pilar Prieto, Timothy Noel 1
1 TU Eindhoven, Netherlands
2 Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologias Quimicas de Ciudad Real, Spain
3 Janssen Research and Development, Spain
4 University of Saint Andrews School of Chemistry, United Kingdom

Integrating reactive distillation with continuous flow processing
Marcus Baumann
School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland

Enabling tools for continuous-flow biphasic liquid-liquid reaction
Nopphon Weeranoppanant a
a Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen, Saensook, Muang, Thailand

High-Throughput Template-Free Continuous Flow Synthesis of Polyaniline Nanofibers
Rekha Singh1,2, Karuna Veeramani1,2, Rishab Bajpai1, and Anil Kumar*1,2
1Department of Chemistry, 1IITB-Monash Research Academy, 2National Centre for Excellence in Technologies for Internal Security (NCETIS), Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semi-Saturated Heterobicyclic Fragments
Nicola Luise, Eleanor Wyatt, Gary Tarver, Paul Graham Wyatt
University of Dundee, School of Life Sciences, DD1 5EH Dundee, UNITED KINGDOM

Continuous Flow Chlorination of Alkenyl Iodides Promoted by Copper Tubing
Antoine Nitelet a, Vanessa Kairouz b, Hélène Lebel b, André B. Charette b, Gwilherm Evano a
a Laboratoire de Chimie Organique, Service de Chimie et Physico, Chimie Organiques, Université libre de Bruxelles (ULB),
Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds
Alexanne Bouchard 1, Vanessa Kairouz 1, Maxime Manneveau 2, Heng-Ying Xiong 2, Tatiana Besset 2
1 Department of Chemistry and Continuous Flow Synthesis Laboratory, Université de Montréal, Montréal, Canada
2 INSA Rouen, CNRS, COBRA (UMR 6014), Normandie Université, Rouen, France

Continuous preparation for rifampicin
Xin Li 1, Zhuang Liu 1, Hao Qi 1, Zheng Fang 1, Siyu Huang 1, Shanshan Miao 1, Kai Guo 1, 2
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
2 State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China

Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis
Hyowon Seo, Long V. Nguyen, Timothy F. Jamison
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

Chemoselective Synthesis of Amines from Ammonium Hydroxide and Hydroxylamine in Continuous Flow
Clément Audubert, Alexanne Bouchard, Gary Mathieu, and Hélène Lebel*
Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b02387

Enantiospecific cyclization of methyl N-(tert-butoxycarbonyl)-N-(3-chloropropyl)-D-alaninate to 2-methylproline derivative via 'memory of chirality' in flow
Gianvito Vilé 1, Gunther Schmidt 2, Sylvia Richard-Bildstein 1, Stefan Abele 2
1 Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd., Allschwill, Switzerland
2 Chemical Development, Idorsia Pharmaceuticals Ltd., Allschwill, Switzerland

Mg-Catalyzed OPPenauer Oxidation—Application to the Flow Synthesis of a Natural Pheromone
Virginie Liautard, Mélodie Birepinte, Camille Bettoli and Mathieu Pucheault*
Institut des Sciences Moléculaires (ISM), UMR 5255 CNRS—Université de Bordeaux, 351 Cours de la Libération, 33405 Talence CEDEX, France

Dehydration of an Insoluble Urea Byproduct Enables the Condensation of DCC and Malonic Acid in Flow
Alexander G. O’Brien*, Eric M. Ricci, and Michel Journet
GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
https://pubs.acs.org/doi/abs/10.1021/acs.oprd.7b00375

Self-Sufficient Flow-Biocatalysis by Coimmobilization of Pyridoxal 5′-Phosphate and ω-Transaminases onto Porous Carriers
Ana I. Benítez-Mateos 1, Martina L. Contente 2, Susana Velasco-Lozano 2, Francesca Paradisi 1, 4, and Fernando López-Gallego 1, 4
1 Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182, Edificio empresarial C”, 20014 San Sebastián, Spain
2 School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
4 Heterogeneous biocatalysis laboratory, Instituto de Síntesis Química y Catalísis Homogénea (ISQCH-CSIC), University of Zaragoza, C/Pedro Curbuna 12, 50009 Zaragoza, Spain
5 ARAID, Aragon I+D foundation, Zaragoza, Spain
https://pubs.acs.org/doi/10.1021/acssuschemeng.8b02672

A Convergent Continuous Multistep Process for the Preparation of C4-Oxime-Substituted Thiazoles
Edouard Godineau *, Claudio Battilocchio 6, Matthias Lehmann 7, Steven V. Ley 7, Ricardo Labes 8, Letitia Birnoschi 8,
Additive Free Fe-Catalyzed Conversion of Nitro to Aldehyde under Continuous Flow Module
Sandip G. Agalave, Moreshwar B. Chaudhari, Girish Singh Bisht and Boopathy Gnanaprakasam*
Department of Chemistry, Indian Institute of Science Education and Research Pune-411008, India

Recent Advances in Photodecarboxylations Involving Phthalimides
Saira Mumtaz A, Mark J. Robertson A and Michael Oelgemöller A B
A James Cook University, College of Science and Engineering, Townsville, Qld 4811, Australia.
B Corresponding author. Email: michael.oelgemoeller@jcu.edu.au

Catalytic Static Mixers for the Continuous Flow Hydrogenation of a Key Intermediate of Linezolid (Zyvox)
James Gardiner *, Xuan Nguyen †, Charlotte Genet †, Mike D. Horne †, Christian Hornung †, John Tsanaktsidis †
† CSIRO Manufacturing, Bayview Avenue, VIC 3169, Australia
‡CSIRO Mineral Resources, Bayview Avenue, Clayton, VIC 3169, Australia

Photoinduced Palladium Negishi Cross-Coupling Through Visible Light Absorption of Palladium-Organozinc complexes
Irini Abdiaja, Lena Hucka,b, José Miguel Mateob, Antonio de la Hoza, M. Victoria Gomezc, Angel Diaz-Ortizd, and Jesús Alcázar * e
a Lead Discovery, Janssen Research and Development, Janssen-Cilag, S.A., Jarama 75A, 45007 Toledo, Spain
b Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
c Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Av. Camilo José Cela, sn, 13071 Ciudad Real, Spain

Three-component assembly of multiply substituted homoallylic alcohols and amines using a flow chemistry photoreactor
Yiding Chen†, David Blakemore‡, Patrick Pasau§ and David V. Ley†
† Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
‡ Medicine Design, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
§ UCB Biopharma SPRL, Chemical Research R5, Chemin du Foriest, 1420 Braine-L’Alleud, Belgium

Mild Homologation of Esters via Continuous Flow Chloroacetate Claisen Reactions
Maximilian A. Ganiek, Maria V. Ivanova, Benjamin Martin* and Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität Munich, Butenandtstr. 5 – 13, 81377 Munich, Germany

Regioselective Chlorination of Quinoline Derivatives via Fluorine Mediation in a Microfluidic Reactor
Hao Qi, Xin Li, Zhuang Liu, Shan-Shan Miao, Prof. Zheng Fang, Lin Chen, Zheng Fang, Prof. Kai Guo
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China

https://pubs.acs.org/doi/abs/10.1021/acs.orglett.8b02907
Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction
Melanie Kitchin,a Kristina Konstas,a Christopher J. Sumby,b Milena L. Czyz,a Peter Valente,a Matthew R. Hill,a,b Anastasios Polyzos,a,c and Christian J. Doonan,a,b

aCSIRO Manufacturing Flagship, Bayview Avenue, Clayton, Australia
bCentre for Advanced Nanomaterials and the School of Physical Sciences, The University of Adelaide, Adelaide, Australia

https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc05181a#divAbstract

Flow-based biocatalysis: Application to peracyetylated arabinofuranosyl-1,5-arabinofuranose synthesis
Teodora Bavaro,a Andrea Pintob, Federica Dall’Oglioc, Maria J. Hernáizd, Carlo F. Morellic, Paolo Zambellic, Carlo De Michelic, Paola Contid, Lucia Tamborinid, Marco Terreni

aDepartment of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
bDepartment of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
cDepartment of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
dDepartment of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain

Continuous Flow Photochemical Benzylic Bromination of a Key Intermediate in the Synthesis of a 2-Oxazolidinone
Y Chen, O de Frutos, C Mateos, JA Rincon, D Cantillo, C Olivier Kappe

Native Chemical Ligation–Photodesulfurization in Flow
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

https://pubs.acs.org/doi/10.1021/jacs.8b03115

Reactive aminations using a 3D printed supported metal(0) catalyst system
Charlotte Genet1, Xuan Nguyenv, Bita Bayatsarmadii, Mike D. Horne1, James Gardiner1, Christian H. Hornung1

1CSIRO Manufacturing, Clayton, South Australia
2CSIRO Minerals Resources, Clayton, South Australia

Flow Synthesis of Coumalic Acid and its Derivatization
Laura K. Smith and Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK.

https://pubs.rsc.org/en/content/articlelanding/2018/re/c8re00116b#divAbstract

Combining CH functionalisation and flow photochemical heterocyclic metamorphosis (FP-HM) for the synthesis of benzo [1, 3] oxazepines
Jasraj S. Babra, Andrew T. Russell, Christopher D. Smith, Yuxiong Zhang
Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK

Studies toward the scaling of gas-liquid photocycloadditions
Dr. Emily B. Corcoran, Dr. François Lévesque, Dr. Jonathan P. McMullen, Dr. John R. Naber
Department of Process Research and Development, Merck Sharp & Dohme Corp., Rahway, USA

P-121: Successive and scalable synthesis of highly stable CsPbBr₃ perovskite microcrystal by microfluidic system and their application in backlight display
Hung-Chia Wang, Zhen Bao, Ru-Shi Liu
Department of Chemistry, National Taiwan UniversityTaipei, Taiwan
Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of TechnologyTaipei, Taiwan

Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions
Martina L. Contente, Francesca Paradisi
School of Chemistry, University of Nottingham, Nottingham, United Kingdom
https://www.nature.com/articles/s41929-018-0082-9

Dichlorophenylacrylonitriles as AhR Ligands displaying selective breast cancer cytotoxicity in vitro
Jennifer R Selective Oxidation of Sulfides in Flow Chemistry
1, Jayne Gilbert2, Stefan Paula3, Xiao Zhu1, Jennette A Sakoff2, Adam McCluskey1
1 The University of Newcastle, Chemistry, Newcastle, Australia
2 Calvary Mater Hospital, Medical Oncology, Newcastle, Australia
3 Purdue University, Chemistry, West Lafayette, United States

Combining C-H functionalisation and flow photochemical heterocyclic metamorphosis (FP-HM) for the synthesis of benzo[1,3]oxazepines
Jasraj S. Babra, Andrew T. Russell, Christopher D. Smith, Yuxiong Zhang
Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK

Multistep Continuous-Flow Processes for the Preparation of Heterocyclic Active Pharmaceutical Ingredients
Romaric Gérardy, Jean-Christophe M. Monbaliu
Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Liège, Belgium
https://link.springer.com/chapter/10.1007/7081_2018_21

Flow Chemistry Approaches Applied to the Synthesis of Saturated Heterocycles
Marcus Baumann, Ian R. Baxendale
Department of Chemistry, University of Durham, Durham, UK
https://link.springer.com/chapter/10.1007/7081_2018_16

An efficient benzoxaborole one-pot synthesis by SiliaCat DPP-Pd heterogeneous catalysis using diboronic acid
Kana kunihiro, Laurence Dumais, Guillaume Lafitte, Emeric Varvier, Loic Tomas, Craig Harris
Nestlé Skin Health, Galderma R&D, France
Ecole Nationale Supérieure des Ingenieurs en Arts Chimiques et Technologiques, France

Total Synthesis of Neomarchantin A: Key Bond Constructions Performed Using Continuous Flow Methods
Émilie Morin, Michäel Raymond, Amaury Dubart, and Shawn K. Collins
Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, Canada H3C 3J7
https://pubs.acs.org/doi/10.1021/acs.orglett.7b01127
In situ epoxide generation by dimethyldioxirane oxidation and the use of epichlorohydrin in the flow synthesis of a library of β-amino alcohols
Peter J. Cossar, Jennifer R. Baker, Nicholas Cain, Adam McCluskey
Chemistry, The University of Newcastle, University Drive Callaghan, New South Wales 2308, Australia
http://rsos.royalsocietypublishing.org/content/5/4/171190

Safe Use of Hazardous Chemicals in Flow
MT Rahman, T Wirth
1 School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, UK
2 School of Chemistry, Cardiff University, Cardiff, UK
https://link.springer.com/chapter/10.1007/7081_2018_17

Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations
T Glasnov
Institute of Chemistry, University of Graz, Graz, Austria
https://link.springer.com/chapter/10.1007/7081_2018_20

Flow Chemistry as a Drug Discovery Tool: A Medicinal Chemistry Perspective
Andrew R. Bogdan, Michael G. Organ
1 Discovery Chemistry and Technology, AbbVie Inc., North Chicago, USA
2 Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
https://link.springer.com/chapter/10.1007/7081_2018_24

Copper mediated, heterogeneous, enantioselective intramolecular Buchner reactions of α-diazoketones using continuous flow processing
DC Crowley†, D Lynch†, AR Maguire‡
† School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
‡ School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
https://pubs.acs.org/doi/abs/10.1021/acs.joc.8b00147

Functionalization of Heteroarenes Under Continuous Flow
Joachim Demaerel, Vidmantas Bieliūnas, Wim M. De Borggraewe
Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
https://link.springer.com/chapter/10.1007/7081_2018_22

Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor
Hsiao-Wu Hsieh†, Connor W. Coley‡, Klavs F. Jensen*†, and Richard I. Robinson*†
† Global Discovery Chemistry – Chemical Technology Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
‡ Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
https://pubs.acs.org/doi/abs/10.1021/acs.oprd.8b00018

A combination of flow and batch mode processes for the efficient preparation of mGlu2/3 receptor negative allosteric modulators (NAMs)
Raveendra Panickar Dhanya, Ananda Herath, Douglas J. Sheffler, Nicholas D.P. Cosford
Cancer Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA

On-demand synthesis of organozinc halides under continuous flow conditions
Mateo Berton, Lena Huck, Jesús Alcázar
Lead Discovery, Janssen Research and Development, Janssen-Cilag, S.A., Toledo, Spain
https://www.nature.com/articles/nprot.2017.141
Generation of Diversity Sets with High sp3 Fraction Using the Photoredox Coupling of Organotrifluoroborates and Organosilicates with Heteroaryl/Aryl Bromides in Continuous Flow
Kevin D Raynor, Gregory D May, Upul K. Bandarage, and Michael J. Boyd
Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States.

Iron-Catalyzed Batch/Continuous Flow C-H Functionalization Module for the Synthesis of Anticancer Peroxides
Moreshwar Bhagwan Chaudhari, Suresh Moorthy, Sohan Patil, Girish Singh Bisht, Haneef Mohamed, Sudipta Basu, and Boopathy Gnanaprakasam
Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
http://pubs.acs.org/doi/abs/10.1021/acs.joc.7b02854

Selective N-monomethylation of primary anilines with dimethyl carbonate in continuous flow
Hyowon Seo, Anne-Catherine Bédard, Willie P. Chen, Robert W. Hicklin, Alexander Alabugin, Timothy F. Jamison
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Continuous flow multistep synthesis of α-functionalized esters via lithium enolate intermediates
Timo von Keutz1, Franz J. Strauss2, David Cantillo2, C. Oliver Kappe2
1 Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Infeldgasse 13, 8010 Graz, Austria
2 Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria

A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic
Marcus Baumann, Ian R. Baxendale and Fabien Deplante
Department of Chemistry, University of Durham, South Road, Durham, Durham, DH1 3LE, UK
https://www.beilstein-journals.org/bjoc/articles/13/251

Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification
Serena Mostarda1, Daniela Passeri1,2, Andrea Carotti2,1, Bruno Cerra2, Carolina Colliva2, Tiziana Benicchi2, Antonio Macchiarulo1, Roberto Pellicciari2, Antimo Gioiello2
1 Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
2 TES Pharma, Corso Vannucci, 47, 06121 Perugia, Italy

Conjugated polymers via direct arylation polymerization in continuous flow: minimizing the cost and batch-to-batch variations for high-throughput energy conversion
Nemal S. Gobalasingham1, Jon E. Carlé2, Frederik C. Krebs2, Barry C. Thompson2, Eva Bundgaard2, Martin Helgesen*2
1 Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California, 90089-1661
2 DTU Energy, Technical University of Denmark, Roskilde, DK-4000, Denmark

Recent advances of microfluidics technologies in the field of medicinal chemistry
László Úrge*, Jesús Alcazar†, Lena Huck‡, György Dormán§
* DBH Group, Budapest, Hungary
† Janssen Research and Development, Toledo, Spain
‡ Innostudio Inc., Budapest, Hungary

Sustainable flow synthesis of a versatile cyclopentenone building block
Marcus Baumann†, Ian R. Baxendale*†, Paolo Filipponi†, and Te Hu‡
† Department of Chemistry, University of Durham, South Road, DH1 3LE Durham, U.K.
‡ Novartis Pharma AG, Fabrikstrasse 14, 4002 Basel, Switzerland
http://pubs.acs.org/doi/abs/10.1021/acs.oprd.7b00328
Auto-tandem catalysis: Pd(II)-catalysed dehydrogenation/oxidative Heck of Cyclopentane-1,3-diones
Claire J C Lamb, Bryan G Nderitu, Gemma McMurdo, John MTobin, Filipe Vilela, and Ai-Lan Lee
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

Exploring effects of intermittent light upon visible light promoted water oxidations
Dominic Walsh*, Pascaline Patureau, Karen Robertson, Shaun Reeksting, Anneke Lubben, Salvador Eslava and Mark T. Wellera
a Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
b Chemical Characterization and Analysis Facility, University of Bath, Bath, BA2 7AY, UK
c Department of Chemical Engineering, University of Bath, BA2 7AY, UK
http://pubs.rsc.org/en/content/articlepdf/2017/se/c7se00304h

Telescoped continuous flow generation of a library of highly substituted 3-thio-1,2,4-triazoles.
Mariana C. F. C. B. Damião, Renan Souza Galaverna, Alan P Kozikowski, James Eubanks and Julio Cezar Pastre
a Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154 - Zip Code 13083-970, Campinas, SP, Brazil
b StarWise Therapeutics LLC - University Research Park – Zip Code 53719-1235, Madison, Wisconsin, USA
c Division of Genetics and Development - Krembil Research Institute – Zip Code M5T 2S8, Toronto, Ontario, Canada
http://pubs.rsc.org/en/content/articlehtml/2017/re/c7re00125h

Targeting a mirabegron precursor by BH3-mediated continuous flow reduction process
Sonia De Angelis, Claudia Carlucci, Modesto de Candia, Gabriele Rebuzzini, Paolo Celestini, Massimiliano Riscazzi, Renzo Luisi, and Leonardo Degennaro
a FLAME-Lab – Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy — Drug Sciences,
University of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
b COSMA S.p.A, Via Colleoni 15/17, Ciserano, BG 24040, Italy

In situ preparation and consumption of O-Mesitylsulfonylhydroxylamine (MSH) in continuous flow for the amination of pyridines
Cara E. Brocklehurst*, Guido Koch, Stephanie Rothe-Pöllet, Luigi La Vecchia
Synthesis and Technologies, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Klybeckstrasse 141, 4057 Basel, Switzerland

Highly efficient oxidation of amines to aldehydes with flow-based biocatalysis
Dr. Martina L. Contente1,2, Federica Dall'Oglio3, Dr. Lucia Tamborini3, Prof. Francesco Molinari4, Prof. Francesca Paradisi1,2
1 School of Chemistry, University of Nottingham, Nottingham, UK
2 UCD School of Chemistry, University College Dublin, Dublin, Ireland
3 Department of Pharmaceutical Sciences, DISFARM, University of Milan, Milan, Italy
4 Department of Food, Environmental and Nutritional Science, DeFENS, University of Milan, Milan, Italy

Novel polystyrene-immobilized chiral amino alcohols as heterogeneous ligands for the enantioselective Arylation of Aldehydes in Batch and Continuous Flow Regime
José Augusto Forni, Luiz Fernando Toneto Novaes, Renan Galaverna, Julio C.Pastre
Institute of Chemistry, University of Campinas – UNICAMP, PO Box 6154, 13083-970, Campinas, SP, Brazil

An efficient and green pathway for continuous Friedel-Crafts acylation over α-Fe2O3 and CaCO3 nanoparticles prepared in the microreactors
Zheng Fang, Wei He, Tao Tu, Niuniu Lv, Chuanhong Qiu, Xin Li, Ning Zhu, Li Wan, Kai Guo
a College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, No. 30 Puzhu South Road, Nanjing, China
b Department of Chemistry, Fudan University, 220 Handan Road, 200433 Shanghai, China
c State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 211816, PR China
A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis
Ran Xiao, John Michael Tobin, Meiqin Zha, Yunlong Hou, Jun He, Filipe Vilela and Zhengtao Xu
Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
http://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta05534j#!divAbstract

A novel micro-flow system under microwave irradiation for continuous synthesis of 1, 4-dihydropyridines in the absence of solvents via Hantzsch reaction
WeiHe, ZhengFang, KaiZhang, TaoTu, NiuniuLv, ChuanhongQiu, KaiGuo
Department of Chemistry, Fudan University, No. 220 Handan Road, Shanghai, 200433, PR China
College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, No. 30 Puzhu South Road, Nanjing, 211816, PR China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, No. 30 Puzhu South Road, Nanjing, 211816, PR China

Methanolysis of epoxidized soybean oil in continuous flow conditions
Vincenzo Pantone, Amelita Grazia Laurens, Cosimo Annesi, Francesco Fracassi, Caterina Fusco, Angelo Nacci
Greenswitch s.r.l., Ferrandina MT, Italy
Dipartimento di Chimica, Università di Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
ICCOM-CNR, SS Bari, Via E. Orabona 4, 70126 Bari, Italy

Visible-light-induced trifluoromethylation of highly functionalized arenes and heteroarenes in continuous flow
Irini Abdia, Cecilia Bottecchia, Jesus Alcazar, Timothy Noël
Janssen Research & Development, Jarama 75A, 45007 Toledo, Spain
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Continuous preparation and use of dibromoformaldoxime as a reactive intermediate for the synthesis of 3-bromoisoxazolines
Claudio Battilocchio, Francesco Bosica, Sam M. Rowe, Bruna Lacerda Abreu, Edouard Godineau, Matthias Lehmann, and Steven V Ley
http://pubs.acs.org/doi/abs/10.1021/acs.oprd.7b00229

Chemoenzymatic synthesis in flow reactors: a rapid and convenient preparation of captopril
Dr. Valerio De Vitis, Dr. Federica Dall’Oglio, Dr. Andrea Pinto, Prof. Carlo De Micheli, Prof. Francesco Molinari, Prof. Paola Conti, Dr. Diego Romano, Dr. Lucia Tamborini
Department of Food Environmental and Nutritional Science, University of Milan, Milan, Italy
Department of Pharmaceutical Sciences, University of Milan, Milan, Italy

Preparation of polyfunctional diorgano-magnesium and - zinc reagents using in situ trapping halogen-lithium exchange of highly functionalized (hetero)aryl halides in continuous flow
Marthe Ketels, Maximilian Andreas Ganiek, Niels Weidmann, Paul Knochel
LMU München, Department of Chemistry, München, Germany

Flow assisted synthesis: a key fragment of SR 142948A
Matthew Oliver Kitching, Olivia E Dixon, Marcus Baumann, Ian Richard Baxendale
University of Durham, Chemistry, Durham, UK
Singlet oxygen oxidations in homogeneous continuous flow using a gas–liquid membrane reactor
Antonia Kouridaki, Kevin Huvaere
EcoSynth NV, Industrielaan 12, 9800 Deinze, Belgium
http://pubs.rsc.org/en/content/articlehtml/2017/re/c7re00053g

A convenient, mild and green synthesis of NH-sulfoximines in flow reactors
Leonardo Degennaro1, Arianna Tota1, Sonia De Angelis2, Michael Andresini1, Cosimo Cardellicchio1, Maria Annunziata Capozzi1, Giuseppe Romanazzi1, Renzo Luisi1
1 University of Bari, Department of Pharmacy - Drug Sciences, Bari, Italy
2 CNR ICOM, Department of Chemistry, Bari, Italy

A Continuous flow method for the desulfurization of substituted thioimidazoles applied to the synthesis of new etomidate derivatives
Marcus Baumann, Ian R Baxendale
Durham University, Department of Chemistry, Durham, UK

High throughput photo-oxidations in a packed bed reactor system
Caleb J.Kong, Daniel Fisher, Bimbisar K. Desai., Yuan Yang, Saeed Ahmad, Katherine Belecki, B. Frank Gupton
Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St. Richmond, VA 23220, USA

Phase separation macrocyclization in a complex pharmaceutical setting: application toward the synthesis of Vaniprevir
Éric Godin, Anne-Catherine Bédard, Michaël Raymond, and Shawn K. Collins*
Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
http://pubs.acs.org/doi/abs/10.1021/acs.joc.7b01308

Grignard Reagents on a Tab: Direct Magnesium Insertion under Flow Conditions
Lena Huck,†,‡ Antonio de la Hoz,*,‡ Angel Díaz-Ortiz,‡ and Jesus Alcázar*,†
†Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75, 45007 Toledo, Spain
‡Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b01590

Co-production of HMF and gluconic acid from sucrose by chemo-enzymatic method
Hongli Wu, Ting Huang, Fei Cao, Qiaogen Zou, Ping Wei, Pingkai Ouyang
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 PR China

Efficient synthesis of 5-(chloromethyl) furfural (CMF) from high fructose corn syrup (HFCS) using continuous flow processing
T. M. Kohl,*a B. Bizet,a P. Kevan,a C. Sellwood,a J. Tsanaktsidis and C. H. Hornung*a
CSIRO Manufacturing Flagship, Bag 10, Clayton South, Australia
http://pubs.rsc.org/en/content/articlelanding/2017/re/c7re00039a/unauth#!divAbstract

Barbier continuous flow preparation and reactions of carbamoyllithiums for nucleophilic amidation
Maximilian Andreas Ganiek, Matthias Richard Becker, Guillaume Berionni, Hendrik Zipse, Paul Knochel
LMU München, Department of Chemistry, München, Germany

Polymer-supported photosensitizers for oxidative organic transformations in flow and under visible light Irradiation
John M. Tobin†, Timothy J. D. McCabe‡, Andrew W. Prentice†, Sarah Holzer†, Gareth O. Lloyd†, Martin J. Paterson†, Valeria Arrighi†, Peter A. G. Cormack‡, and Filipe Vilela†
† School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation

Dorota D Plaza, Vinzent Strobel, Parminder Kaur KS Heet, Andrew B Sellars, Seng-Soi Hoong, Andrew J Clark, Alexei A Lapkin

School of Engineering, University of Warwick, Coventry, UK
Department of Chemical Engineering and Biotechnology, University of Cambridge, UK
Aachener Verfahrenstechnik – Process Systems Engineering, RWTH Aachen University, Aachen, Germany
Department of Chemistry, University of Warwick, Coventry, UK

Hydrogen sulfide chemistry in continuous flow: Efficient synthesis of 2-oxopropanethioamide

David Cantillo, Phillip A. Inglesby, Alistair Boyd, C. Oliver Kappe

Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010 Graz, Austria
AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom

Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

Chinmay A. Shukla, Amol A. Kulkarni

Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory (NCL) Campus, Pune 411008, India
Chem. Eng. & Proc. Dev. Div., CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India

Utilizing on- and off-line monitoring tools to follow a kinetic resolution step during flow synthesis

Kathleen A. Farley, Usa Reilly, Dennis P. Anderson, Brian P. Boscoe, Mark W. Bundesmann, David A. Foley, Manjinder S. Lall, Chao Li, Matthew R. Reese, Jiangli Yan

Medicinal Sciences, Pfizer Worldwide Research and Development, Groton, CT, United States

Flow Synthesis of Cyclobutanones via [2+2] Cycloaddition of Keteneiminium Salts and Ethylene Gas

Claudio Battilocchio, Grazia Iannucci, Shiyi Wang, Edouard Godineau, Amandine Krieger, Alain De Mesmaeker and Steven V Ley

Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK
Syngenta Crop Protection AG, Crop Protection Research, Schaffhauserstrasse 101, CH-4332, Switzerland

Continuous Flow α-Arylation of N,N-Dialkylhydrazones under Visible-Light Photoredox Catalysis

Juan A. Vega, José Manuel Alonso, Gabriela Méndez, Myriam Ciordia, Francisca Delgado, and AndréS A. Trabanco

Neuroscience Medicinal Chemistry, Janssen Research & Development, Jarama 75A, 45007 Toledo, Spain

Utilization of flow chemistry in catalysis: New avenues for the selective synthesis of Bis(indolyl)methanes

Swapna S. Mohapatra, Zoe E. Wilson, Sujit Roy, Steven V. Ley

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, India

Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction

Ananda Herath and Nicholas D. P. Cosford

Cancer Metabolism & Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
Preparation of Forced Gradient Copolymers Using Tube-in-Tube Continuous Flow Reactors
Simon Saubern, Xuan Nguyen, Van Nguyen, James Gardiner, John Tsanaktsidis, John Chiefari
CSIRO Manufacturing, Clayton, VIC, Australia

A Continuous Flow Synthesis and Derivatization of 1,2,4-Thiadiazoles
Marcus Baumann, Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, DH1 3LE Durham, United Kingdom.

Self-optimisation and model-based design of experiments for developing a C–H activation flow process
Alexander Echtermeyer1,2, Yehia Amar1, Jacek Zakrzewski1 and Alexei Lapkin2
1Aachener Verfahrenstechnik – Process Systems Engineering, RWTH Aachen University, Aachen, Germany
2Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom

Diels–Alder reactions of myrcene using intensified continuous-flow reactors
Christian H. Hornung, Miguel Á. Álvarez-Diéguez, Thomas M. Kohl and John Tsanaktsidis
CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia

Active Site-Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly
Deborah Senf, Colin Ruprecht, Goswinus de Kruijff, Sebastian Simonetti, Frank Schuhmacher, Peter Seeberger, Fabian Pfrengle
Max-Planck-Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany

Mixed-Linkage Glucan Oligosaccharides Produced by Automated Glycan Assembly Serve as Tools to Determine the Substrate Specificity of Lichenase
Pietro Dallabernardina, Frank Schuhmacher, Peter H Seeberger, Fabian Pfrengle
Max-Planck-Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany

Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp2) – C(sp3) cross-coupling
Irini Abdiaj, Jesús Alcázar
Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75, 45007 Toledo, Spain

Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis
Amruta Joshi-Pangu†, François Lévesque†, Hudson G. Roth‡, Steven F. Oliver†, Louis-Charles Campeau†, David Nicewicz‡, and Daniel A. DiRocco*†
† Process Research & Development, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, United States
‡ Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

Halogenation of organic compounds using continuous flow and microreactor technology
David Cantilloab and C. Oliver Kappea,b
* Corresponding authors
a Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, Austria
b Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, Austria
Application of the Photoredox Coupling of Trifluoroborates and Aryl Bromides to Analog Generation Using Continuous Flow

Travis J. DeLano, Upul K. Bandarage, Natalie Palaychuk, Jeremy Green, and Michael J. Boyd
Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States

Design and Development of Pd-catalyzed Aerobic N-Demethylation Strategies for the Synthesis of Noroxymorphone in Continuous Flow Mode

Bernhard Gutmann, David Cantillo, Ulrich Weigl, D Phillip Cox and C. Oliver Kappe
Institute of Chemistry, University of Graz, Nawi Graz, Heinrichstrasse 28, 8010 Graz, Austria and Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010 Graz, Austria

β-Glutamyl-dipeptides: Easy tools to rapidly probe the stereoelectronic properties of the ionotropic glutamate receptor binding pocket

Lucia Tamborini, Veronica Nicosia, Paola Conti, Federica Dall'Oglio, Carlo De Micheli, Birgitte Nielsen, Anders A. Jensen, Darryl S. Pickering, Andrea Pinto
Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen OE, Denmark

Expedited access to thieno[3,2-c]quinolin-4(5H)-ones and benzo[h]-1,6-naphthyridin-5(6H)-ones via a continuous flow photocyclization method

Y. Fang and G. K. Tranmer
College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, Canada
Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada

A benchtop NMR spectrometer as a tool for monitoring mesoscale continuous-flow organic synthesis: equipment interface and assessment in four organic transformations

Cynthia M. Archambault and Nicholas E. Leadbeater
Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, USA

BODIPY-based conjugated microporous polymers as reusable heterogeneous photosensitisers in a photochemical flow reactor

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China

Reformatsky and Blaise reactions in flow as a tool for drug discovery. One pot diversity oriented synthesis of valuable intermediates and heterocycles

L. Huck, M. Berton, A. de la Hoz, A. Diaz-Ortiz and J. Alcázar
Janssen Research and Development, Janssen-Cilag, S.A., C/ Jarama 75, Toledo, Spain
Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
Visible light activation of Boronic Esters enables efficient photoredox C(sp²)–C(sp³) cross-couplings in flow
Fabio Lima, Dr. Mikhail A. Kabeshova, Dr. Duc N. Tran, Dr. Claudio Battilocchio, Dr. Joerg Sedelmeier, Dr. Gottfried Sedelmeier, Dr. Berthold Schenkel, Prof. Steven V. Ley
* Corresponding authors

Department of Chemistry, University of Cambridge, Cambridge, UK
Novartis Pharma AG, Basel, Switzerland

Engineering chemistry: integrating batch and flow reactions on a single, automated reactor platform
D. E. Fitzpatrick and S. V. Ley
* Corresponding authors

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

http://pubs.rsc.org/en/content/articlelanding/2016/re/c6re00160b#!divAbstract

Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis
Kristine J. Barlow, Victor Bernabeu, Xiaojuan Hao, Timothy C. Hughes, Oliver E. Hutt, Anastasios Polyzos, Katharine A. Turner, Graeme Moad

CSIRO Manufacturing Flagship, Bag 10, Clayton South, Victoria 3169, Australia
University of Melbourne, School of Chemistry, Parkville, Victoria 3010, Australia

http://dx.doi.org/10.1016/j.reactfunctpolym.2015.09.008

Ethyl Lethiodiazoacetate: Extremely Unstable Intermediate Handled Efficiently in Flow
Dr. Simon T. R. Müller, Tobias Hokampa, Svenja Ehrmann, Dr. Paul Hellier, Prof. Dr. Thomas Wirth

School of Chemistry, Cardiff University, Cardiff, UK

A facile hybrid ‘flow and batch’ access to substituted 3,4-dihydro-2H-benzo[b][1,4]oxazinones
Andrew J. S. Lin, Cecilia C. Russell, Jennifer R. Baker, Shelby L. Frailey, Jennette A. Sakoff and Adam McCluskey

* Corresponding authors

Chemistry, Centre for Chemical Biology, School of Environmental & Life Sciences, University of Newcastle, University Drive, Callaghan, Australia

Chemical Engineering, Trine University, Angola, 46703 USA
Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, Australia

http://pubs.rsc.org/is/content/articlelanding/2016/ob/c6ob01153e#!divAbstract

Continuous flow biocatalysis: production and in-line purification of amines by immobilised transaminase from Halomonas elongata
Matteo Planchestainer, Martina Letizia Contente, Jennifer Cassidy, Francesco Molinari, Lucia Tamborini and Francesca Paradisi

* Corresponding authors

UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli studi di Milano, Via Mangiagalli 25, Milan, Italy
Department of Pharmaceutical Sciences (DISFARM), Università degli studi di Milano, Via Mangiagalli 25, Milan, Italy
School of Chemistry, University of Nottingham, University Park, Nottingham, UK

http://pubs.rsc.org/en/content/articlelanding/2017/gc/c6gc01780k#!divAbstract

A laboratory-scale continuous flow chlorine generator for organic synthesis
Franz J. Strauss, David Cantillo, Javier Guerra and C. Oliver Kappe

* Corresponding authors

Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, Austria
Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
Crystal Pharma, Gadea Pharmaceutical Group, A Division of AMRI, Parque Tecnológico de Boecillo, Valladolid, Spain

http://pubs.rsc.org/en/content/articlelanding/2016/re/c6re00135a/unauth#!divAbstract

Continuous processing and efficient in situ reaction monitoring of a hypervalent iodine (III) mediated cyclopropanation using benchtop NMR spectroscopy
Aryl amination using ligand-free Ni(II) salts and photoredox catalysis
Emily B. Corcoran, Michael T. Pirnot, Shishi Lin, Spencer D. Dreher, Daniel A. DiRocco, Ian W. Davies, Stephen L. Buchwald, David W. C. MacMillan
1 Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
2 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Process Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA
http://science.sciencemag.org/content/early/2016/06/22/science.aag0209

Catalytic Chan-Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant
Carl J. Mallia, Paul M. Burton, Alexander M. R. Smith, Gary C. Walter and Ian R. Baxendale
1 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
2 Syngenta CP R&D Chemistry, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-12-115

An approach to the synthesis of 4-aryl and 5-aryl substituted thiazole-2(3H)-thiones employing flow processing
Monaem Baltia, Shelli A. Miller, Mohamed Lotfi Efrit and Nicholas E. Leadbeater
* Corresponding authors
a Université Tunis El Manar, Laboratory of Organic Synthesis and Heterocyclic Chemistry, Faculty of Science of Tunis, Department of Chemistry, 1060 Tunis, Tunisia
b Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, USA
http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra15488c#!divAbstract

Flow carbonylation of sterically hindered ortho-substituted iodoarenes
Carl J. Mallia, Gary C. Walter and Ian R. Baxendale
1 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
2 Syngenta CP R&D Chemistry, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-12-147

Exploring flow procedures for diazonium formation
Te Hu, Ian R. Baxendale and Marcus Baumann
*Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK
http://www.mdpi.com/1420-3049/21/7/918/htm

Catalytic macrocyclization strategies using continuous flow: formal total synthesis of ivorenolide A
Mylène de Léséleuc, Eric Godin, Shawn Parisien-Collette, Alexandre Levesque, and Shawn K. Collins
*University of Montréal, Department of Chemistry, Montréal, Canada
http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b01500

Delivering enhanced efficiency in the synthesis of α-diazosulfoxides by exploiting the process control enabled in flow
Patrick G. McCaw, Benjamin J. Deadman, Anita R. Maguire, Stuart G. Collins
1 Department of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
2 Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland

Continuous-flow synthesis and derivatization of aziridines through palladium-catalyzed C(sp2)—H activation
Jacek Zakrzewski, Adam P. Smalley, Dr. Mikhail A. Kabeshov, Prof. Matthew J. Gaunt, Prof. Alexei A. Lapkin
1 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
2 Chemistry Department, University of Cambridge, Cambridge, UK

Metal-free borylation of electron-rich aryl(pseudo)halides under continuous-flow photolytic conditions
* Corresponding authors
Kai Chen, Man Sing Cheung, Zhenyang Lin and Pengfei Li
Difluorocarbene addition to alkenes and alkynes in continuous flow
Pauline Rullière, Patrick Cyr, and André B. Charette*
Université de Montréal, Centre in Green Chemistry and Catalysis, Department of Chemistry, Faculty of Arts and Science, P.O. Box 6128, Station Downtown, Québec, Canada H3C 3J7
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b00573?journalCode=orlef7

A simple setup for transfer hydrogenations in flow chemistry
Matthew Hutchings, Thomas Wirth*
School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK

A scalable and operationally simple radical trifluoromethylation
Joel W. Beatty¹, James J. Douglas¹,², Kevin P. Cole², Corey R. J. Stephenson¹†
¹ Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
² Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
http://www.nature.com/ncomms/2015/150810/ncomms8919/full/ncomms8919.html

Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation
Junjie Shen⁵, Roman Steinbach⁵, John Tobin⁵, Mayumi Mouro Nakata⁵, Matthew Bower⁵, Martin McCoustra⁵, Helen Bridle⁵, Valeria Arrighi⁵, Filipe Vilela⁵
⁵ School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Biodiesel synthesis using integrated acid and base catalysis in continuous flow
Mousa Asadi, Joel F. Hooper, David W. Lupton
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia

The generation of a library of bromodomain-containing protein modulators expedited by continuous flow synthesis
Paolo Filipponi and Ian R. Baxendale*
¹ Department of Chemistry, University of Durham South Road, Durham, DH1 3LE, United Kingdom

An efficient etherification of Ginkgo biloba extracts with fewer side effects in a micro-flow system
Yin-Lin Qin⁵, Wei He⁵, Mei Su⁵, Zheng Fang⁵, Ping-Kai Ouyang⁵, Kai Guo⁵,⁶,⁷
⁵ College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, Nanjing 210009, China
⁶ Jiangsu Carephar Pharmaceutical Co., Ltd., Nanjing 210014, China
⁷ School of Pharmaceutical, Nanjing Technology University, Nanjing 210009, China

Fine chemical syntheses under flow using SiliaCat catalysts
Rosaria Ciriminna,a Valeria Pandarus,b François Béland*b and Mario Pagliaro**
*a Corresponding authors
b Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
b SilicCycle, 2500, Parc-Technologique Blvd, Québec, G1P 4S6 Canada
http://pubs.rsc.org/en/content/articlelanding/2016/cy/c6cy0038j#!divAbstract

Continuous-flow synthesis of 2H-azirines and their diastereoselective transformation to aziridines
Marcus Baumann*, Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
http://community.dur.ac.uk/i.r.baxendale/papers/Synlett2016.27.159.pdf
Continuous flow magnesiation or zincation of acrylonitriles, acrylates, and nitroolefins. Application to the synthesis of butenolides
Maximilian A. Ganiek, Matthias R. Becker, Marthe Ketels, and Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich, Germany
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b00086

Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor
James Gardiner*, Christian H. Hornung*, John Tzanaktsidis*, Duncan Guthrie
Department of Chemistry, University of Strathclyde, Glasgow, G1 1XJ, UK
School of Chemistry, University of Manchester, Manchester, M13 9PL, UK

Continuous flow photochemistry: a need for chemical engineering
Karine Loubière, Michael Oelgemöller, Tristan Aillet, Odile Dechy-Cabaret, Laurent Prat
CNRS, Laboratoire de Génie Chimique (LGC UMR 5503), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
Université de Toulouse, INPT, ENSIACET, F-31432 Toulouse, France
James Cook University, College of Science, Technology and Engineering, Townsville, Queensland 4811, Australia

Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions†
Kai Chen, Shuai Zhang, Pei He and Pengfei Li*
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, China
http://pubs.rsc.org/en/content/articlehtml/2016/sc/c5sc04521e

Continuous flow photochemistry as an enabling synthetic technology: synthesis of substituted-6(5H)-phenanthridinones for use as poly (ADP-ribose) polymerase inhibitors
Y. Fang* and G. K. Tranmer*
Corresponding authors
College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada
http://pubs.rsc.org/en/content/articlelanding/2016/md/c5md00552c#!divAbstract

Controlled generation and use of CO in flow†‡
Steffen V. F. Hansen *, Zoe E. Wilson *, Trond Ulven * and Steven V. Ley **
Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK.
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
http://pubs.rsc.org/en/content/articlelanding/2014/rd/c4rd00020g

The solid copper-mediated C-N cross-coupling of phenylboronic acids under continuous flow conditions
Jennifer Bao*, Geoffrey K. Tranmer*
College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow†
Javier Guerra *, David Cantillo * and C. Oliver Kappe **
Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
Crystal Pharma, Gadea Pharmaceutical Group, a division of AMRI, Parque Tecnológico de Boeicillo, Valladolid, 47151, Spain
http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp00070c

Integrating multicomponent flow synthesis and computational approaches for the generation of a tetrahydroquinoline compound based library
Bruno Cerra, Serena Mostarda, Chiara Custodi, Antonio Macchiuro and Antimo Gioiello*

Flow Chemistry Publications - 31 -
www.vapourtec.co.uk/publications
The expanding utility of continuous flow hydrogenation
Peter J. Cossar,a Lacey Hizartzidis,a Michela I. Simone,a Adam McCluskey**a and Christopher P. Gordon*b
*Corresponding authors
Centre for Chemical Biology, Chemistry Building, School of Environmental and Life Science, The University of Newcastle, University Drive, Callaghan, Australia
**Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Locked Bag, Penrith, Australia

Highly efficient and safe procedure for the synthesis of aryl 1,2,3-triazoles from aromatic amine in a continuous flow reactor
Federica Stazi,a Damiano Cancognia, Lucilla Turcob, Pieter Westerduina, Sergio Bacchia,a GlaxoSmithKline Spa, Chemical Development Department, Synthetic Chemistry, Via Fleming 4, 37135 Verona, Italy
b GlaxoSmithKline Spa, Analytical Chemistry, Via Fleming 4, 37135 Verona, Italy

The changing face of organic synthesis
Authors: Ley, Steven V.; Baxendale, Ian R.

A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis
Daniel E. Fitzpatrick†, Claudio Battilocchio†, and Steven V. Ley†
† Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Thermolysis of 1,3-dioxin-4-ones: fast generation of kinetic data using in-line analysis under flow
Thomas Durand,a Cyril Henry,a David Bolien,a David C. Harrowven,* Sally Bloodworth,* Xavier Franckb and Richard J. Whitty**a
a Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
b Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France

Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor
Achilleas Constantinou†¶, Gaowei Wu†, Albert Corredera†, Peter Ellis‡, Donald Bethell§, Graham J. Hutchings∥, Simon Kuhn⊥, and Asterios Gavriilidis*
† Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
¶ Division of Chemical and Petroleum Engineering, School of Engineering, London South Bank University, London, SE1 0AA, United Kingdom
‡ Johnson Matthey, Blunts Court Road, Reading, RG4 9NH, United Kingdom
§ Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
∥ School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
⊥ Department of Chemical Engineering, KU Leuven, W. de Croylaan 46, 3001 Leuven, Belgium

Automated glycan assembly of xylol glucan oligosaccharides
Pietro Dallabernardina,ab Frank Schuhmacher,ab Peter H. Seeberger,ab and Fabian Pfrengle*ab
a Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam,
Continuous flow Buchwald–Hartwig amination of a pharmaceutical intermediate

Polina Yaseneva, Paul Hodgson, Jacek Zakrzewski, Sebastian Falß, Rebecca E. Meadows and Alexei A. Lapkin

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK. E-mail: aal35@cam.ac.uk; Fax: +44 (0)1223 334796

INVITE GmbH, Chempark Leverkusen, 51373 Leverkusen, Germany

Pharmaceutical Development, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, UK

An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides

Paolo Zambelli, Lucia Tamborini, Samuele Cazzamalli, Andrea Pinton, Stefania Arioli, Silvia Balzaretti, Francisco J. Plou, Lucía Fernández-Arrojo, Francesco Molinari, Paola Conti, Diego Romano

Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy

Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy

Instituto de Catálisis y Petroquímica, CSIC, 28049 Madrid, Spain

Dynamic flow synthesis of porous organic cages

Michael E. Briggs, Anna G. Slater, Neil Lunt, Shan Jiang, Marc A. Little, Rebecca L. Greenaway, Tom Hasell, Claudio Battilocchio, Steven V. Ley and Andrew I. Cooper

Department of Chemistry and Centre for Materials Discovery, University of Liverpool, Crown Street, Liverpool, UK

Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK

Continuous photochemistry: the flow synthesis of ibuprofen via a photo-Favorskii rearrangement

M. Baumann and Ian R. Baxendale

Department of Chemistry, University of Durham, South Road, Durham, UK

Making ends meet: flow synthesis as the answer to reproducible high-performance conjugated polymers on the scale that roll-to-roll processing demands

Martin Helgesen, Jon E. Carlé, Gisele A. dos Reis Benatto, Roar R. Søndergaard, Mikkel Jørgensen, Eva Bundgaard, Frederik C. Krebs

Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark

Amination of aryl halides and esters using intensified continuous flow processing

Thomas M. Kohl, Christian H. Hornung and John Tsanaktsidis

CSIRO Manufacturing Flagship, Bag 10, Clayton South, Victoria 3169, Australia

An integrated flow and microwave approach to a broad spectrum protein kinase inhibitor

Cecilia Russell, Andrew J. S. Lin, Peter Hains, Michela I. Simone, Phillip J. Robinson and Adam McCluskey

A Centre for Chemical Biology, Chemistry, School of Environmental and Life Science, The University of Newcastle, University Drive, Callaghan, Australia

B Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, Australia

Light-induced C-H arylation of (hetero)arenes by in situ generated diazo anhydrides

Dr. David Cantillo, Dr. Carlos Mateos, Dr. Juan A. Rincon, Dr. Oscar de Frutos and Prof. Dr. C. Oliver Kappe

Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz (Austria)

Centro de Investigación Lilly S. A. Avda. de la Industria 30, 28108 Alcobendas-Madrid (Spain)
Photodecarboxylative benzylations of \(N\)-methoxyphthalimide under batch and continuous-flow conditions
Hossein Mohammadkhani Pordanjani \(A\) \& \(B\), Christian Faderl \(A\) \& \(C\), Jun Wang \(A\), Cherie A. Motti \(D\), Peter C. Junk \(A\) and Michael Oelgemöller \(A\) \& \(E\)

\(A\) James Cook University, College of Science, Technology and Engineering, Townsville, Qld 4811, Australia.
\(B\) Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
\(C\) Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
\(D\) Australian Institute of Marine Science (AIMS), Biomolecular Analysis Facility, Townsville, Qld 4810, Australia.
\(E\) Corresponding author.
http://www.publish.csiro.au/?paper=CH15356

A short multi-step flow synthesis of a potential spirocyclic fragrance component
Ian R. Baxendale\(^*\)
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK

Flow synthesis of 2-methylpyridines via \(\alpha\)-methylation
Camille Manansala \(1\) and Geoffrey K. Tranmer \(1,2,*\)

\(1\) College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
\(2\) Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
http://www.mdpi.com/1420-3049/20/9/15797/htm

The development of a short route to the API ropinirole hydrochloride
Zeshan Yousuf,\(^a\) Andrew K. Richards,\(^b\) Andrew N. Dwyer,\(^c\) Bruno Linclau\(^a\) and David C. Harrowven\(^a\)

\(a\) Chemistry, University of Southampton, Highfield, Southampton, UK
\(b\) GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
\(c\) Formally at GlaxoSmithKline Innovation and Sustainable Manufacturing COE, Worthing, UK
http://pubs.rsc.org/en/content/articlelanding/2015/ob/c5ob01739d#!divAbstract

A practical deca-gram scale ring expansion of (R)-(−)-carvone to (R)-(+) 3-methyl-6-isopropenyl-cyclohept-3-enone-1
Leandro de C. Alves,\(^a\) André L. Desiderá,\(^a\) Kleber T. de Oliveira,\(^a\) Sean Newton,\(^b\) Steven V. Ley\(^b\) and Timothy J. Brocksom\(^a\)

\(a\) Departamento de Química, Universidade Federal de São Carlos, P.O. Box 676, São Carlos – SP, Brazil
\(b\) Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
http://pubs.rsc.org/en/content/articlelanding/2015/ob/c5ob00525f/unauth#!divAbstract

A flow-based synthesis of telmisartan
Alex Martin, Ali Siamaki, Katherine Belecki, B. Gupton
Department of Chemistry and Department of Chemical and Life Science Engineering Virginia Commonwealth University 601 W. Main St. Richmond Virginia 23284 United States

Two-stage flow synthesis of coumarin via \(O\)-acetylation of salicylaldehyde
Xin Li\(^1\), Anbang Chen\(^1\), Yangzhi Zhou\(^1\), Lingling Huang\(^2\), Zheng Fang\(^2\), Haifeng Gan\(^1\), Kai Guo\(^1\)

\(1\) College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China
\(2\) School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China
\(3\) State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China

The preparation of ethyl levulinate facilitated by flow processing: the catalyzed and uncatalyzed esterification of levulinic acid

Photodecarboxylations in an advanced meso-scale continuous flow photoreactor
Sam Josland¹, Saira Mumtaz² and Michael Oelgemöller²,*
¹ University of Southampton, Department of Chemistry, University Road, Southampton, SO17 1BJ, United Kingdom
² Bioengineering Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, HANTS, SO17 1BJ, UK
³ GlaxoSmithKline R&D Ltd., Medicines Research Centre, Gunnels Wood Road, Stevenage, HERTS, SG1 2NY, UK

Generation and trapping of ketenes in flow
Cyril Henry¹, David Bollen¹, Bogdan Ibanescu¹, Sally Bloodworth¹, David C. Harrowven¹, Xunli Zhang², Andy Craven³, Helen F. Sneddon² Richard J. Whitby¹,*
¹ Chemistry, University of Southampton, Southampton, HANTS, SO17 1BJ, UK,
² Bioengineering Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, HANTS, SO17 1BJ, UK
³ GlaxoSmithKline R&D Ltd., Medicines Research Centre, Gunnels Wood Road, Stevenage, HERTS, SG1 2NY, UK

A concise flow synthesis of efavirenz†
Dr. Camille A. Correia¹, Dr. Kerry Gilmore¹, Prof. Dr. D. Tyler McQuade³ and Prof. Dr. Peter H. Seeberger¹,²,*
¹ Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
² Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
³ Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (USA)

A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions
Lucie Guetzoyan¹ Ian. R. Baxendale¹,²
¹ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
² Department of Chemistry, University of Durham, South Road, Durham, UK

Development of a flow method for the hydroboration/oxidation of olefins
José A. Souto,*¹,² Robert A. Stockman³ Steven V. Ley¹
¹ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
² Departamento de Química Orgánica, Universidad de Vigo, Vigo, Spain
³ School of Chemistry, University of Nottingham, Nottingham, UK

Reevaluation of the 2-nitrobenzyl protecting group for nitrogen containing compounds: an application of flow photochemistry
Chloe I. Wendell, Michael J. Boyd
Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, MA, United States

Flow synthesis of ethyl isocyanooacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c]pyrimidines
Marcus Baumann,¹ Antonio M. Rodriguez Garcia¹,² Ian R. Baxendale*¹
¹ Department of Chemistry, Durham University, South Road, Durham, UK
Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions
Alberto Martínez,1 Jamin L. Krinsky,1 Itziar Peñafiel,1 Sergio Castillón,2 Konstantin Loponov,1 Alexei Lapkin,1 Cyril Godard,*1 Carmen Claver*1
1 Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, C/ Marcel lli Domingo s/n, Campus Sescelades, Tarragona, Spain
2 Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/ Marcel lli Domingo s/n, Campus Sescelades, Tarragona, Spain

Efficient continuous-flow synthesis of macrocyclic triazoles
Anne-Catherine Bédard Jeffrey Santandrea Shawn Collins
Department of Chemistry and Centre for Green Chemistry and Catalysis, University of Montreal

Factors Influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen
Dr. Dmitry B. Ushakov,† Matthew B. Plutschack,† Dr. Kerry Gilmore,‡ and Prof. Dr. Peter H. Seeberger,
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)

Glucuronidation of bile acids under flow conditions: design of experiments and Koenigs–Knorr reaction optimization
Serena Mostarda,a Paolo Filipponi,a Roccaldo Sardella,a Francesco Venturoni,a Benedetto Natalini,a Roberto Pelliccioni*b and Antimo Gioiello*a
a Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06123 Perugia, Italy
b Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Italy

Electroactive and photoactive poly[isoindigo-alt-EDOT] synthesized using direct (hetero)arylation polymerization in batch and in continuous flow
François Grenier,† Badrou Réda Aïch,‡† Yu-Ying Lai,§ Maxime Guérette,† Andrew B. Holmes,§ Ye Tao,‡ Wallace W. H. Wong,*,§ and Mario Leclerc*,†
†Département de Chimie, Université Laval, Québec City, QC G1V 0A6, Canada
‡ Information and Communications Technologies Portfolio, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
§ School of Chemistry, Bio21 Institute, the University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia

Chemical assembly systems: layered control for divergent, continuous, multistep syntheses of active pharmaceutical ingredients
Dr. Diego Ghislieri, Dr. Kerry Gilmore and Prof. Dr. Peter H. Seeberger
Department of Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Universität Berlin, Germany
Continuous reductions and reductive aminations using solid NaBH₄
Kerry Gilmore †, Stella Vukelić †, D. Tyler McQuade †§, Beate Koksch †, and Peter H. Seeberger **†‡
† Max Planck Institute of Colloids and Interfaces, Germany
‡ Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
§ Department of Chemistry and Biochemistry, Florida State University, United States
http://dx.doi.org/10.1021/op500310s

Versatile, high quality and scalable continuous flow production of metal-organic frameworks
Marta Rubio-Martinez, Michael P. Batten, Anastasios Polyzos, Keri-Constanti Carey, James I. Mardel, Kok-Seng Lim & Matthew R. Hill
CSIRO Materials Science and Engineering, Australia
http://dx.doi.org/10.1038/srep05443

Flow synthesis and biological activity of aryl sulphonamides as selective carbonic anhydrase IX and XII inhibitors
Emiliano Rosatelli a, Andrea Carotti a, Mariangela Ceruso b, Claudiu T. Supuran a,*, Antimo Gioiello a,*
a Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia I-06123, Italy
b Laboratory of Bioinorganic Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (Firenze) I-50019, Italy
c Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino (Firenze) I-50019, Italy

Facilitating biomimetic syntheses of borrarine derived alkaloids by means of flow-chemical methods.
Sonja B. Kamptmann a and Steven V. Ley
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
http://dx.doi.org/10.1071/CH14530

Synthesis of a carprofen analogue using a continuous flow UV-reactor
Antoine Caron , Augusto C. Hernandez-Perez , and Shawn K. Collins *
Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, Québec, Canada.
http://dx.doi.org/10.1021/op5002148

Continuous synthesis of organozinc halides coupled to negishi reactions
Nerea Alonso2,3, L. Zane Miller2, Juan de M. Muñoz2, Jesus Alcázar2,*, and D. Tyler McQuade1,*
1Department of Chemistry and Biochemistry, Florida State University, USA
2Janssen Research and Development, Janssen-Cilag, Toledo, Spain
3Facultad de Química, Universidad de Castilla-La Mancha, Spain
http://dx.doi.org/10.1002/adsc.201400243

Efficient synthesis of panaxadiol derivatives using continuous-flow microreactor and evaluation of anti-tumor activity
Yan Wu1,*, Wei-Qi Chenh,*, Yu-Qing Zhaoa,*, Hu-Ri Piao*=a
a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, China
b Department of Chemistry, Fudan University, Shanghai, China
c School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
http://dx.doi.org/10.1016/j.cclet.2014.1103

Continuous flow magnesiation of functionalized heterocycles and acrylates with TMPMgCl-LiCl
Dr. Trine P. Petersen, Matthias R. Becker and Prof. Dr. Paul Knochel*
Ludwig-Maximilians-Universität München, Department Chemie, München, Germany
http://dx.doi.org/10.1020/10.1002/anie.201404221

A continuous-flow approach to 3,3,3-trifluoromethylpropenes: bringing together Grignard addition, Peterson elimination, inline extraction, and solvent switching
Trevor A. Hamlin †, Gillian M. L. Lazarus †, Christopher B. Kelly †, and Nicholas E. More **†‡
† Department of Chemistry, University of Connecticut, United States
‡ Department of Community Medicine & Health Care, University of Connecticut Health Center, United States

http://dx.doi.org/10.1021/op500190j

Development of a Grignard-type reaction for manufacturing in a continuous-flow reactor
Fabrice G. J. Odille †§, Anna Stenemyr †§, and Fritiof Pontén *‡
† Pharmaceutical Development R&D, Chemical Science, AstraZeneca, SE-151 85 Södertälje, Sweden
‡ Innovative Medicines, Cardiovascular and Metabolic Diseases, Medicinal Chemistry, AstraZeneca R&D, Sweden
§ SP Process Development, Forskargatan, Sweden

First example of alkyl-aryl Negishi cross-coupling in flow: mild, efficient and clean introduction of functionalized alkyl groups
Brecht Egle2, Juan de Muñoz1, Nerea Alonso1, Wim M. De Borggraeve2, Antonio de la Hoz3, Angel Díaz-Ortiz3, Jesús Alcázar1
1 Janssen Research and Development Department of Medicinal Chemistry Janssen-Cilag, Toledo Spain
2 Department of Chemistry, Molecular Design and Synthesis University of Leuven, Heverlee Belgium
3 Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas, Spain

A general continuous flow method for palladium catalysed carboxylation reactions using single and multiple tube-in-tube gas-liquid microreactors
Ulrike Gross1, Peter Koos1, Matthew O'Brien1,2,*, Anastasios Polyzos1,3 and Steven V. Ley1
1 Whiffen Laboratory, Department of Chemistry, University of Cambridge, Cambridge, UK
2 School of Physical and Geographical Sciences, Keele University, Staffordshire, UK
3 CSIRO, Materials Science and Engineering, Clayton South, Australia

Flow chemistry meets advanced functional materials
Dr. Rebecca M. Myers, Daniel E. Fitzpatrick, Dr. Richard M. Turner and Prof. Steven V. Ley*
Department of Chemistry, University of Cambridge, Cambridge, UK

Multistep flow synthesis of 5-amino-2-aryl-2H-[1,2,3]-triazole-4-carbonitriles
Dr. Jérôme Jacq and Dr. Patrick Pasau*
UCB Biopharma, Avenue de l’Industrie, 1420 Braine l’Alleud (Belgium)

The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions
Steffen Glöckner, Duc N. Tran, Richard J. Ingham, Sabine Fenner, Zoe E. Wilson, Claudio Battilocchio and Steven V. Ley*
Department of Chemistry, University of Cambridge, Cambridge, UK

First example of a continuous-flow carboxylation reaction using aryl formates as CO precursors
Nerea Alonso1,3, Juan de Muñoz1, Brecht Egle2, Johannes L. Vrijdag2, Wim M. De Borggraeve2, Antonio de la Hoz3, Angel Díaz-Ortiz3, Jesús Alcázar1
1 Janssen Research and Development, Janssen-Cilag Department of Medicinal Chemistry S.A., Toledo, Spain
2 Molecular Design and Synthesis University of Leuven, Department of Chemistry, Heverlee Belgium
3 Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas Real, Spain

Glycosylation with N-acetyl glycosamine donors using catalytic iron(III) triflate: from microwave batch chemistry to a scalable continuous-flow process
Amandine Xolin,a Arnaud Stévenin,a Mathieu Pucheault,b Stéphanie Norsikian,a François-Didier Boyer*ac and Jean-Marie Beau*aad
a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
b Institut des Sciences Moléculaires, CNRS-Université de Bordeaux, Talence, France
c Institut Jean-Pierre Bourguin, UMR1318 INRA-AgroParisTech, Versailles, France
da Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux,
The generation of a library of bromodomain-containing protein modulators expedited by continuous flow synthesis
Paolo Filipponi and Ian R. Baxendale
Department of Chemistry, University of Durham South Road, Durham, DH1 3LE, United Kingdom

An efficient etherification of Ginkgo biloba extracts with fewer side effects in a micro-flow system
Yin-Lin Qin, Wei He, Mei Su, Zheng Fang, Ping-Kai Ouyang, and Kai Guo
College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, Nanjing 210009, China
Jiangsu Carephar Pharmaceutical Co., Ltd., Nanjing 210014, China
School of Pharmaceutical, Nanjing Technology University, Nanjing 21009, China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 211816, China

Continuous flow synthesis of thieno[2,3-c]isoquinolin-5(4H)-one scaffold: a valuable source of PARP-1 inhibitors
Paolo Filipponi, Carmine Ostacolo, Ettore Novellino, Roberto Pellicciari, and Antimo Gioiello
Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, I-06123 Perugia, Italy
Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli, Italy
TES Pharma S.r.l., Corciano (Perugia), Italy

Regioselective synthesis of 3-aminoimidazo[1,2-α]-pyrimidines under continuous flow conditions
Ashlie J. E. Butler, Mark J. Thompson, Patrick J. Maydom, James A. Newby, Kai Guo, Harry Adams, and Beining Chen
Department of Chemistry, University of Sheffield, Sheffield, U.K.

Microwave irradiation and flow chemistry for a straightforward synthesis of piano-stool iron complexes
Anastassiya Pagnoux-Ozherelyeva, David Bolien, Sylvain Gaillard, Flavie Peudru, Jean-François Lohier, Richard J. Whitby, and Jean-Luc Renaud
Normandie University, University of Caen Basse Normandie, Laboratoire de Chimie Moléculaire et Thioorganique, CNRS, Caen, France
Chemistry, University of Southampton, Southampton, UK

Continuous flow macrocyclization at high concentrations: synthesis of macrocyclic lipids
Anne-Catherine Bédard, Sophie Régnier and Shawn K. Collins
Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Montréal, Canada

Continuous synthesis of artemisinin-derived medicines
Kerry Gilmore, Daniel Kopetzki, Ju Weon Lee, Zoltan Horvath, D. Tyler McQuade, Andreas Seidel-Morgenstern, and Peter H. Seeberger
Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Germany
Max-Planck-Institute for Dynamics of Complex Technical Systems, Germany
Otto-von-Guericke-University, Chair for Chemical Process Technology, Germany
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany

Consecutive oxygen-based oxidations convert amines to α-cyanoepoxides
Dmitry B. Ushakov, Kerry Gilmore, and Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany

Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen

Flow Chemistry Publications - 39 - www.vapourtec.co.uk/publications
Flow synthesis of a versatile fructosamine mimic and quenching studies of a fructose transport probe
Matthew B. Plutschack, D. Tyler McQuade, Giulio Valenti, and Peter H. Seeberger
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, USA

http://dx.doi.org/10.1021/bjoc.9.238

Synthesis of all four stereoisomers of 3-(tert-Butoxycarbonyl)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid
Bettina Bakonyi, Markus Furegati, Christian Kramer, Luigi La Vecchia, and Flavio Ossola
Doetsch Grether AG, Falkensteinerstrasse 37, 4132 Muttenz, Switzerland

http://dx.doi.org/10.1021/jo4013282

Seamless integration of dose-response screening and flow chemistry: efficient generation of structure–activity relationship data of β-Secretase (BACE1) inhibitors
Dr. Michael Werner, Christoph Kuratli, Dr. Rainer E. Martin, Dr. Remo Hochstrasser, David Wechsler, Dr. Thilo Enderle, Dr. Alexander I. Alanine and Prof. Dr. Horst Vogel
Medicinal Chemistry, Small Molecule Research, Pharma Research & Early Development (pRED), F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel (Switzerland)

http://dx.doi.org/10.1002/anie.201309301

Controlled synthesis of poly(3-hexylthiophene) in continuous flow
Helga Seyler, Jegadesan Subbiah, Andrew B. Holmes and Wallace W. H. Wong
School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia

http://dx.doi.org/10.3762/bjoc.9.170

Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide
Richard J. Ingham, Claudio Battilocchio, Joel M. Hawkins and Steven V. Ley
Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK

http://dx.doi.org/10.3762/bjoc.10.56

Robust and reusable supported palladium catalysts for cross-coupling reactions in flow
William R. Reynolds, Pawel Plucinski and Christopher G. Frost
Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, UK
Department of Chemistry, University of Bath, Claverton Down, Bath, UK
Department of Chemical Engineering, University of Bath, Claverton Down, Bath, UK

http://dx.doi.org/10.1039/C3CY00836C

Investigating the continuous synthesis of a nicotinonitrile precursor to nevirapine
Ashley R. Longstreet¹, Suzanne M. Opalka¹, Brian S. Campbell¹, B. Frank Gupton², Tyler McQuade¹
¹Department of Chemistry and Biochemistry, Florida State University, United States
²Department of Chemistry, Virginia Commonwealth University, United States

http://dx.doi.org/10.3762/bjoc.9.292

Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization
Kristine J. Barlow (née Tan), Xiaojuan Hao, Timothy C. Hughes, Oliver E. Hutt, Anastasios Polyzos, Kathleen A. Turner, Graeme Moad
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science & Engineering, Australia

http://dx.doi.org/10.1039/C3PY01015E

New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-cancer agent cribrostatin 6†
Mubina Mohamed¹, Théo P. Gonçalves¹, Prof. Richard J. Whitby¹, Dr. Helen F. Sneddon², Prof. David C. Harrowven¹
¹Chemistry, University of Southampton, UK
²GlaxoSmithKline Medicines Research Centre, UK

http://dx.doi.org/10.1002/chem.201102263

Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation
Nida Ambreen, Ravi Kumar and Thomas Wirth
Cardiff University, School of Chemistry, Park Place, Cardiff, UK

http://dx.doi.org/10.3762/bjoc.9.162

The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow
Kimberley A. Roper¹, Malcolm B. Berry² and Steven V. Ley¹
¹Innovative Technology Centre, Department of Chemistry, University of Cambridge, U.K.
²GlaxoSmithKline, Stevenage, U.K.

http://dx.doi.org/10.3762/bjoc.9.207

Flow-based, cerium oxide enhanced, low-level palladium sonogashira and heck coupling reactions by perovskite catalysts
Claudio Battilocchio¹, Benjamin N. Bhowal¹, Rajeev Chorghade¹, Benjamin J. Deadman¹, Joel M. Hawkins², Steven V. Ley¹
¹Innovative Technology Centre, Department of Chemistry, University of Cambridge, UK
²Pfizer Worldwide Research & Development, Groton, USA

http://dx.doi.org/10.1002/ijch.201300049

The fit for purpose development of S1P₁ receptor agonist GSK2263167 using a Robinson annulation and Saegusa oxidation to access an advanced phenol intermediate
Robert M. Harris, Benjamin I. Andrews, Stacy Clark, Jason W. B. Cooke, John C. S. Gray, and Stephanie Q. Q. Ng
Chemical Development, GlaxoSmithKline Research and Development Ltd., UK

http://dx.doi.org/10.1021/op400162p

Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions
Trevor A. Hamlin and Nicholas E. Leadbeater
Department of Chemistry, University of Connecticut, USA

http://dx.doi.org/10.3762/bjoc.9.215

Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent
Licia Tamborini¹, Diego Romano², Andrea Pinto², Martina Contente³, Maria C. Iannuzzi³, Paola Conti³, Francesco Molinari³
¹ Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
² Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DEFENS), Università degli Studi di Milano, Italy

http://dx.doi.org/10.1016/j.tetlet.2013.08.119

Continuous flow synthesis of Coumarin
Anbang Chen¹, Xin Li², Yangzhi Zhou², Lingling Huang², Zheng Fang², HaiFeng Gan¹ and Kai Guo¹,
¹ College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology

http://dx.doi.org/10.3762/bjoc.9.215
Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen
Philip R D Murray, Duncan L Browne, Julio C Pastre, Chris Butters, Duncan Guthrie, Steven V Ley
Department of Chemistry, University of Cambridge, UK
Instituto de Química, University of Campinas, Brazil.
Vapourtec Ltd, UK
http://dx.doi.org/10.1021/op4001548

Integrated synthesis and testing of substituted xanthine based DPP4 inhibitors: application to drug discovery
Werngard Czechtizky, Jürgen Dedio, Bimbisar Desai, Karen Dixon, Elizabeth Farrant, Qixing Feng, Trevor Morgan, David M. Parry, Manoj K. Ramjee, Christopher N. Selway, Thorsten Schmidt, Gary J. Tarver, Adrian G. Wright
Sanofi-Aventis.
Cyclofluidic Ltd.
http://dx.doi.org/10.1021/ml400171b

Applying flow chemistry: methods, materials, and multistep synthesis
D. Tyler McQuade, Peter H. Seeberger
Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces
Institute for Chemistry and Biochemistry, Freie Universität Berlin,
Department of Chemistry and Biochemistry, Florida State University
http://dx.doi.org/10.1021/jo400583m

Controlled synthesis of poly(3-hexylthiophene) in continuous flow
Helga Seyler, Jegadesan Subbiah, Andrew B. Holmes and Wallace W. H. Wong
School of Chemistry, Bio21 Institute, University of Melbourne
http://dx.doi.org/10.3762/bjoc.9.170

Building a sulfonamide library by eco-friendly flow synthesis
Antimo Gioiello, Emiliano Rosatelli, Michela Teofrasti, Paolo Filipponi, and Roberto Pellicciari
Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
http://pubs.acs.org/doi/abs/10.1021/co400012m

The rapid generation of isocyanates in flow
Marcus Baumann, Ian R. Baxendale
Department of Chemistry, University of Durham
http://dx.doi.org/10.3762/bjoc.9.184

Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization
D. Tyler McQuade, Alexander G. O’Brien, Markus Dörr, Rajathees Rajaratnam, Ursula Eisold, Bopanna Monnanda, Tomoya Nobuta, Hans-Gerd Löhmansröben, Eric Meggers, Peter H. Seeberger
Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces
Chemistry and Biochemistry, Florida State University
Institut für Chemie, Philipps-Universität Marburg
Potsdam Institut für Chemie
Freie Universität Berlin
http://dx.doi.org/10.1039/C3SC51846A

Microwave heating and conventionally-heated continuous-flow processing as tools for performing cleaner palladium-catalyzed decarboxylative couplings using oxygen as the oxidant – a proof of principle study
Nicholas Leadbeater, DiAndra M. Rudzinski
Department of Chemistry, University of Connecticut.
http://dx.doi.org/10.1515/gps-2013-0043

Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform

Flow Chemistry Publications - 42 - www.vapourtec.co.uk/publications
A multi-step continuous flow process for the N-demethylation of alkaloids
Yuji Nakano, G. Paul Savage, Simon Saubern, Peter J. Scammells, Anastasios Polyzos
1 CSIRO Materials Science and Engineering, Victoria, Australia.
2 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.
http://dx.doi.org/10.1039/C3RA00125C

A two-stage continuous-flow synthesis of spirooxazine photochromic dyes
Mark York, Adriana Edenharter
1 CSIRO Materials Science and Engineering, Clayton, Vic. 3169, Australia.
2 Cooperative Research Centre for Polymers, Notting Hill, Vic. 3168, Australia.
3 Advanced Polymerik Pty Ltd, Notting Hill, Vic. 3168, Australia
http://dx.doi.org/10.1071/CH12435

Ozonolysis of some complex organic substrates in flow
M. D. Roydhouse, W. B. Motherwell, A. Constantinou, A. Gavriilidis, R. Wheeler, Down, Campbell
1 Dept of Chemistry, University College London, UK
2 Dept of Chemical Engineering, University College London, UK
3 GSK, Stevenage, UK
http://dx.doi.org/10.1039/C3RA00125C

Continuous synthesis and use of N-heterocyclic carbene copper(I) complexes from insoluble Cu2O
Suzanne M. Opalka, Jin Kyoon Park, Ashley R. Longstreet, D. Tyler McQuade
1 Department of Chemistry and Biochemistry, Florida State University, USA
2 Department of Chemistry and Chemical Biology, Cornell University, USA
3 Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Korea
http://dx.doi.org/10.1021/ol303442m

An expeditious synthesis of imatinib and analogues utilising flow chemistry methods
Mark D Hopkin, Ian Baxendale, Steven.V.Ley
Dept of Chemistry, University of Cambridge, UK
http://dx.doi.org/10.1039/C2OB27002A

Continuous-flow generation of diazoesters and their direct use in S-H and P-H insertion reactions: synthesis of a-sulfanyl, a-sulfonyl and a-phosphono carboxylates
Hannah E. Bartrum, David C. Blakemore, Christopher J. Moody, Christopher J. Hayes
1 School of Chemistry, University of Nottingham, UK
2 Pfizer Neusentis, Cambridge, UK
http://dx.doi.org/10.1016/j.tet.2013.01.020

Synthesis of carbohydrate-functionalised sequence-defined oligo (amidoamine)s by photochemical thiol-ene coupling in a continuous flow reactor
Felix Wojcik, Alexander G. O’Brien, Sebastian Götze, Peter H. Seeberger, Laura Hartmann
1 Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)
2 Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
http://dx.doi.org/10.1002/chem.201203927

Synthesis of RAFT block copolymers in a multi-stage continuous flow process inside a tubular reactor
Christian H. Hornung, Xuan Nguyen, Stella Kyi, John Chiefari, Simon Saubern
CSIRO Materials Science & Engineering, Victoria, Australia.
http://dx.doi.org/10.1071/CH12479
Continuous flow synthesis of organic electronic materials: case studies in methodology translation and scale-up
Helga Seyler¹, Stefan Haid², Tae-Hyuk Kwon¹, David J. Jones¹, Peter Bauerle¹, Andrew B. Holmes¹, Wallace W. H. Wong¹
¹Bio21 Institute, University of Melbourne, Australia.
²Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Germany.
http://dx.doi.org/10.1071/CH12406

Preparation of arene chromium tricarbonyl complexes using continuous-flow processing: (η6-C₆H₅CH₃)Cr(CO)₃ as an example
Christopher (Xiang) Lee¹, Elizabeth A. Pedrick¹, Nicholas E. Leadbeater¹,²
¹Department of Chemistry, University of Connecticut, USA
²Department of Community Medicine and Health Care, University of Connecticut Health Center, USA
http://dx.doi.org/10.1556/JFC-D-12-00018

Visible light-initiated preparation of functionalized polystyrene monoliths for flow chemistry
Farhan R. Bou-Hamdan¹, Kathleen Krüger¹, Klaus Tauer¹, Tyler McQuade ¹,³, Peter H. Seeberger ¹,²
¹Max Planck Institute of Colloids and Interfaces Potsdam, Germany.
²Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
³Department of Chemistry & Biochemistry, Florida State University, USA.
http://dx.doi.org/10.1071/CH12405

Integrated continuous processing and flow characterization of RAFT polymerization in tubular flow reactors
Christian H. Hornung, Xuan Nguyen, Geoff Dumfday, Simon Saubern*
CSIRO Materials Science and Engineering, Victoria, Australia
http://dx.doi.org/10.1002/mren.201200029

Synthesis of an H3 antagonist via sequential one-pot additions of a magnesium ate complex and an amine to a 1,4-ketoester followed by carbonyl-directed fluoride addition
Pharmaceutical Sciences, Pfizer Inc., Groton, USA
http://dx.doi.org/10.1021/op300093j

A "catch-react-release" method for the flow synthesis of 2-aminopyrimidines and preparation of the imatinib base
Richard J. Ingham, Elena Riva, Nikzad Nikbin, Ian R. Baxendale, and Steven V. Ley*
Innovative Technology Centre, University of Cambridge, U.K.
http://dx.doi.org/10.1021/ol301673q

Sustainable and efficient methodology for CLA synthesis and identification
Andres Moreno, Maria Moreno, Maria Victoria Gómez, Cristina Cebrian, Pilar Prieto, Antonio de la Hoz
Departamento de Química Inorgánica, , Universidad de Castilla-La Mancha, Ciudad Real, Spain.
http://dx.doi.org/10.1039/C2GC35792E

Continuous synthesis and purification by direct coupling of a flow reactor with simulated moving-bed chromatography
Alexander G. O’Brien¹, Zoltán Horváth³, François Lévesque ¹, Ju Weon Lee³, Andreas Seidel-Morgenstern³, Peter H. Seeberger ¹,²
¹Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
²Freie Universität Berlin, Germany
³Max-Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
http://dx.doi.org/10.1002/anie.201202795

A continuous flow process for the radical induced end group removal of RAFT polymers
Christian H. Hornung, Almar Postma, Simon Saubern, John Chieffari
CSIRO Materials Science & Engineering, Victoria, Australia
http://dx.doi.org/10.1002/mren.201200007

Continuous flow synthesis of secondary amides by tandem azidation-amidation of anilines
Christian Spiteri, John E. Moses*
Asymmetric homogeneous hydrogenation in flow using a tube-in-tube reactor
Sean Newton¹, Steven V. Ley¹, Eva Casas Arcé², Damian M. Grainger²
¹Department of Chemistry, University of Cambridge, U.K.
²Johnson Matthey Catalysis & Chiral Technology, Cambridge, U.K.

Continuous flow hydrogenation using an on-demand gas delivery reactor
Michael A. Mercadante, Christopher B. Kelly, Christopher (Xiang) Lee, Nicholas E. Leadbeater*
Department of Chemistry, University of Connecticut, USA

An efficient method for the lipase-catalysed resolution and in-line purification of racemic flurbiprofen in a continuous-flow reactor
Lucia Tamborini¹, Diego Romano², Andrea Pinto¹, Arianna Bertolani¹², Francesco Molinari², Paola Conti¹
¹Dipartimento di Scienze Farmaceutiche ‘Pietro Pratesi’, Università degli Studi di Milano, Italy
²Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Italy

Soluble polymer-supported flow synthesis: A green process for the preparation of heterocycles
Nicolò Prosa, Raphaël Turgis, Riccardo Picardi, Marie-Christine Scherrman
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris-Sud, France

Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts
Francesco Venturoni, Antimo Gioriello, Roccando Sardella, Benedetto Natalini and Roberto Pellicciari
Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Italy

Development of a continuous flow scale-up approach of reflux inhibitor AZD6906
Tomas Gustafsson, Henrik Sörensen, Fritiof Pontén*
Medicinal Chemistry, AstraZeneca R&D Mölndal, Sweden

Phase-transfer catalysis under continuous flow conditions: an alternative approach to the biphasic liquid/liquid O-alkylation of phenols
Daniele De Zani², Matteo Colombo¹
¹NiKem Research 20021 via Zambeletti 25 Milan Baranzate, Italy
²Erregierre, San Paolo D'Argon Bergamo, Italy

Continuous-flow synthesis of the anti-malaria drug artemisinin
François Lévesque¹, Peter H. Seeberger¹,²
¹Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
²Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany

Continuous proline catalysis via leaching of solid proline
Suzanne M. Opaika¹, Ashley R. Longstreet² and D. Tyler McQuade³
¹Department of Chemistry and Chemical Biology, Cornell University, USA
²Department of Chemistry and Biochemistry, Florida State University, USA
³Department of Chemistry, University of Cambridge, UK

Scale-up of flow-assisted synthesis of C2-symmetric chiral PyBox ligands
Claudio Battilocchio¹³, Marcus Baumann¹, Ian R. Baxendale¹, Mariangela Biava³, Matthew O. Kitching¹, Steven V. Ley¹, Rainer E. Martin*², Stephan A. Ohnmacht², Nicholas D. C. Tappin¹
¹Department of Chemistry, University of Cambridge, UK
Application of flow chemistry to the selective reduction of esters to aldehydes
Juan de M. Muñoz¹, Jesús Alcázar¹, Antonio de la Hoz², Angel Díaz-Ortiz²
¹Janssen, Toledo, Spain
²Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Spain

Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-diels-alder reaction under superheated continuous flow conditions
Rainer E. Martin¹, Falk Morawitz², Christoph Kuratli¹, André M. Alker², Alexander I. Alanine²¹
¹Chemistry Technology and Innovation, F. Hoffmann-La Roche Ltd, Basel, Switzerland
²Biostructure Section, F. Hoffmann-La Roche Ltd, Basel Switzerland

The application of a monolithic triphenylphosphine reagent for conducting appel reactions in flow microreactors
Kimberley A. Roper¹, Heiko Lange¹, Anastasios Polyzos¹, Malcolm B. Berry², Ian R. Baxendale¹ and Steven V. Ley¹
¹Innovative Technology Centre, University of Cambridge
²GlaxoSmithKline, Stevenage, UK

Continuous preparation of arylmagnesium reagents in flow with inline IR monitoring
Tobias Brodmann¹, Peter Koos¹, Albrecht Metzger¹, Paul Knochel*², Steven V. Ley*¹
¹Department of Chemistry, University of Cambridge, U.K.
²Department of Chemistry, Ludwig Maximilians-Universität, München, Germany

New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-cancer agent cribrostatin (ROS=reactive-oxygen species)
Mubina Mohamed¹, Théo P. Gonçalves¹, Richard J. Whitby¹, Helen F. Sneddon², David C. Harrowven¹
¹Dept of Chemistry, University of Southampton, UK
²GSK Medicines Research Centre, Stevenage, UK

The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contact
Trine P. Petersen 123, Dr. Anastasios Polyzos 14, Dr. Matthew O’Brien 1, Dr. Trond Ulven 2, Dr. Ian R. Baxendale 1, Prof. Steven V. Ley 1
¹Whiffen Laboratory, University of Cambridge, UK
²Department of Physics and Chemistry, University of Southern Denmark
3 Discovery Chemistry and DMPK, H. Lundbeck A/S, Denmark
4 CSIRO, Materials Science and Engineering, Australia

Lead diversification 2: application to P38, gMTP and lead compounds
M. Abid Masood ¹, Marc Bazin², Mark E. Bunnage¹, Andrew Calabrese³, Mark Cox³, Sally-Ann Fancy¹, Elizabeth Farrant¹, David W. Pearce¹, Manuel Perez¹, Laure Hitzel¹, Torren Peakman¹
¹Worldwide Medicinal Chemistry, Pfizer, UK
²Hepatochem, Cambridge, MA, USA
³Celgene San Diego, USA

A continuous-flow synthesis of annulated and polysubstituted furans from the reaction of ketones and a-haloketones
Mark York
CSIRO Materials Science and Engineering, Australia
Cooperative Research Centre for Polymers, Notting Hill, Australia
Suzuki-Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow
Timothy Noël and Andrew J. Musacchio
Department of Chemistry, MIT, USA
http://dx.doi.org/10.1021/ol202052q

The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contact
Trine P. Petersen123, Anastasios Polyzos14, Matthew O’Brien1, Trond Ulven2, Ian R. Baxendale1, Steven V. Ley1,*
1Whiffin Laboratory, Department of Chemistry, University of Cambridge
2Department of Physics and Chemistry, University of Southern Denmark
3Discovery Chemistry and DMPK, H. Lundbeck A/S, Denmark
4CSIRO, Materials Science and Engineering, Victoria, Australia
http://dx.doi.org/10.1002/cssc.201100339

Continuous flow synthesis of conjugated polymers
Helga Seyler, David J. Jones, Andrew B. Holmes and Wallace W. H. Wong
Bio21 Institute, University of Melbourne, Australia
http://dx.doi.org/10.1039/C1CC14315H

Continuous-flow, palladium-catalysed alkoxycarbonylation reactions using a prototype reactor in which it is possible to load gas and heat simultaneously
Michael A. Mercadante and Nicholas E. Leadbeater
Department of Chemistry, University of Connecticut, USA
http://dx.doi.org/10.1039/C1OB05808H

Teflon AF-2400 mediated gas–liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration
Peter Koos, Ulrike Gross, Anastasios Polyzos, Matthew O’Brien, Ian Baxendale and Steven V. Ley
Innovative Technology Centre, University of Cambridge, UK
http://dx.doi.org/10.1039/C1OB06017A

Rapid access to α-alkoxy and α-amino acid derivatives through safe continuous-flow generation of diazoesters
Hannah E. Bartrum1, David C. Blakemore2, Christopher J. Moody3, Christopher J. Hayes3
1School of Chemistry, University of Nottingham, UK
2Pfizer Global Research and Development, Sandwich, UK
http://dx.doi.org/10.1002/chem.201101590

Continuous flow photolysis of aryl azides: preparation of 3H-azepinones
Farhan R. Bou-Hamdan, François Lévesque, Alexander G. O’Brien, Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Berlin, Germany
http://dx.doi.org/10.3762/bjoc.7.129

Ozonolysis in flow using capillary reactors
M. D. Roydhouse1, A. Ghaini2, A. Constantinou, A. Cantu-Perez2, W. B. Motherwell3, and A. Gavriilidis2
1Department of Chemistry, University College London, UK
2Department of Chemical Engineering, University College London, UK
http://dx.doi.org/10.1021/op200036d

Nitrile oxide 1,3-dipolar cycloaddition by dehydration of nitromethane derivatives under continuous flow conditions
Malte Brasholz, Simon Saubern* and G. Paul Savage
CSIRO Materials Science and Engineering, Victoria, Australia.
http://dx.doi.org/10.1071/CH11079

Nitration chemistry in continuous flow using fuming nitric acid in a commercially available flow reactor
Cara E. Brocklehurst, Hansjörg Lehmann, and Luigi La Vecchia
Global Discovery Chemistry, Novartis, Basel, Switzerland
http://dx.doi.org/10.1021/op200055r
Synthesis of a drug-like focused library of trisubstituted pyrrolidines using integrated flow chemistry and batch methods
Marcus Baumann1, Ian R. Baxendale1, Steven V. Ley1, Christoph Kuratli2, Rainer E. Martin2, Josef Schneider2
1Innovative Technology Centre, University of Cambridge, U.K.
2F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies
Elena Riva2, Anna Rencurosio1, Stefania Gagliardi1, Daniele Passarella2, Marisa Martinelli1*
1NiKem Research S.r.l., Milan, Italy
2Università degli Studi di Milano, Milan, Italy

Preparation of fluoxetine by multiple flow processing steps
Batoul Ahmed-Omer, Adam J. Sanderson
Eli Lilly and Co. Ltd., Lilly Research Centre, UK.

Oxidation reactions in segmented and continuous flow chemical processing using an N-(tert-Butyl) phenylsulfinimidoyl chloride monolith
Lange, Matthew J. Capener, Alexander X. Jones, Catherine J. Smith, Nikzad Nikbin, Ian R. Baxendale, Steven V. Ley*
Innovative Technology Centre, University of Cambridge, UK

Decarboxylative biaryl synthesis in a continuous flow reactor
Paul P. Lange¹, Lukas J. Gooßen, Philip Podmore, Toby Underwood, Nunzio Sciammetta
¹Technische Universität Kaiserslautern, Germany
²Pfizer Global R&D, Sandwich, UK

Diastereoselective chain-elongation reactions using microreactors for applications in complex molecule assembly
Catherine F. Carter¹, Heiko Lange¹, Daiki Sakai², Ian R. Baxendale¹, Steven V. Ley¹
¹Innovative Technology Centre, University of Cambridge, UK, CB2 1EW, UK
²Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan

One-flow, multistep synthesis of nucleosides by Brønsted acid-catalyzed glycosylation
Adam Sniady, Matthew W. Bedore, Timothy F. Jamison
Novartis Institutes for Biomedical Research Inc., Cambridge, USA
MIT, Cambridge, USA

An integrated flow and batch-based approach for the synthesis of o-methyl siphonazole
Marcus Baumann, Ian R. Baxendale, Malte Brasholz, John J. Hayward, Steven V. Ley, Nikzad Nikbin
Innovative Technology Centre, Cambridge, UK

Flow synthesis of organic azides and the multistep synthesis of imines and amines using a new monolithic triphenylphosphine reagent
Catherine J. Smith, Christopher D. Smith, Nikzad Nikbin, Steven V. Ley, Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK

A fully automated, multistep flow synthesis of 5-amino-4-cyano-1,2,3-triazoles
Catherine J. Smith, Nikzad Nikbin, Steven V. Ley, Heiko Lange, Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK
A general, one-step synthesis of substituted indazoles using a flow reactor
Rob C. Wheeler, Emma Baxter, Ian B. Campbell, Simon J. F. Macdonald
GlaxoSmithKline, Stevenage, UK

Continuous flow synthesis of fullerene derivatives
Helga Seyler, Wallace Wing Ho Wong, Dave Jones, Andrew B. Holmes
University Of Melbourne, Australia

Controlled RAFT polymerization in a continuous flow microreactor
Christian H. Hornung, Carlos Guerrero-Sanchez, Malte Brasholz, Simon Saubern, John Chieffari, Graeme Moad, Ezio Rizzardo, San H. Thang
CSIRO Materials Science & Engineering, Victoria, Australia

Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing
Malte Brasholz, Karin von Känel, Christian H. Hornung, Simon Saubern, John Tsanaktsidis
CSIRO Materials Science & Engineering, Victoria, Australia

Continuous flow thermolysis of azidoacrylates for the synthesis of heterocycles and pharmaceutical intermediates
Alexander G. O'Brien, François Lévesque and Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

Safe and reliable synthesis of diazoketones and quinoxalines in a continuous flow reactor
Laetitia J. Martin, Andreas L. Marzinik, Steven V. Ley, Ian R. Baxendale
1 Novartis Institute for BioMedical Research, Basel, Switzerland
2 Innovative Technology Centre, Cambridge, UK

The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor
Anastasios Polyzos, Matthew O'Brien, Trine P. Petersen, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK

A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing
Heiko Lange, Catherine F. Carter, Mark D. Hopkin, Adrian Burke, Jon G. Goode, Ian R. Baxendale, Steven V. Ley
1 Innovative Technology Centre, University of Cambridge, UK
2 Mettler-Toledo AutoChem, UK

Continuous flow coupling and decarboxylation reactions promoted by copper tubing
Yun Zhang, Timothy F. Jamison, Sejal Patel, Nello Mainolfi
1 Novartis Institutes for Biomedical Research Inc., Cambridge, USA
2 MIT, Cambridge, USA

Synthesis of β-Keto esters in-flow and rapid access to substituted pyrimidines
Hannah E. Bartrum, David C. Blakemore, Christopher J. Moody, and Christopher J. Hayes
1 School of Chemistry, University of Nottingham, UK
2 Pfizer Global Research and Development, Sandwich, UK

Synthesis of 3-aryl/benzyl-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole derivatives: a comparison between
conventional, microwave-assisted and flow-based methodologies

Sabrina Castellano¹, Lucia Tamborini², Monica Viviano¹, Andrea Pinto², Gianluca Sbardella¹, and Paola Conti²
¹ Dipartimento di Scienze Farmaceutiche, Université degli Studi di Salerno, Italy
² Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Université degli Studi di Milano, Italy

http://dx.doi.org/10.1021/jo1014323

Flow synthesis of tricyclic spiropiperidines as building blocks for the histrionicotoxin family of alkaloids

Malte Brasholz¹, Brian A. Johnson², James M. Macdonald¹, Anastasios Polyzos¹, John Tsanaktsidis¹, Simon Saubern¹, Andrew B. Holmes¹,² and John H. Ryan¹
¹ CSIRO Molecular and Health Technologies, Victoria, Australia
² School of Chemistry, Bio 21 Institute, University of Melbourne, Victoria, Australia

http://dx.doi.org/10.1016/j.tet.2010.04.092

Preparation of arylsulfonyl chlorides by chlorosulfonylation of in situ generated diazonium salts using a continuous flow reactor

Laia Malet-Sanz, Julia Madrzak, Steven V. Ley
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1039/C0OB00450B

A continuous flow process using a sequence of microreactors with in-line IR analysis for the preparation of N,N-diethyl-4-(3-fluorophenylpiperidin-4-ylidemethyl)benzamide as a potent and highly selective δ-opioid receptor agonist

Zizheng Qian, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1002/chem.201090183

KMnO₄-mediated oxidation as a continuous flow process

Jorg Sedelmeier, Steven V. Ley, Ian R. Baxendale and Marcus Baumann
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1021/ol101345z

Synthesis of highly substituted nitropyrrrolidines, nitropyrrrolizines and nitopyrroles via multicomponent-multistep sequences within a flow reactor

Marcus Baumann, Ian R. Baxendale, Andreas Kirschning, Steven V. Ley, * and Jens Wegner
Department of Chemistry, University of Cambridge

http://dx.doi.org/10.3987/COM-10-S(E)77

A gram-scale batch and flow total synthesis of perhydrohistrionicotin

Dr. Malte Brasholz¹,², Dr. James M. Macdonald¹, Dr. Simon Saubern¹, Dr. John H. Ryan³, Prof. Dr. Andrew B. Holmes¹,²
¹ CSIRO Molecular and Health Technologies, Victoria, Australia
² School of Chemistry, Bio 21 Institute, University of Melbourne, Victoria, Australia
³ School of Chemistry, University of Oxford, Oxford, UK

http://dx.doi.org/10.1002/chem.201090183

Effect of phase transfer chemistry, segmented fluid flow, and sonication on the synthesis of cinnamic esters

Mauro Riccaboni, Elena La Porta, Andrea Martorana and Roberta Attanasio
Department of Medicinal Chemistry, NiKem Research Srl, Milan, Italy

http://dx.doi.org/10.1016/j.tet.2010.04.031

Continuous flow palladium (II)-catalyzed oxidative heck reactions with arylboronic acids

Luke R. Odell¹, Jonas Lindh¹, Tomas Gustafsson², Mats Larhed¹ *
¹ Organic Pharmaceutical Chemistry, Department of MedChem, Uppsala University, Sweden
² AstraZeneca R&D Malmö, Sweden

http://dx.doi.org/10.1002/ejoc.201000063

Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions

E. Riva¹, S. Gagliardi², M. Martinelli², D. Passarella², D. Vigo² and A. Rencurosi³
¹ Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
² NiKem Research S.r.l., Milan, Italy

http://dx.doi.org/10.1016/j.tet.2010.04.031
[3+2] Dipolar cycloadditions of an unstabilised azomethine ylide under continuous flow conditions
Mark Grafton, Andrew C. Mansfield and M. Jonathan Fray
Pfizer Global Research and Development, Sandwich, UK

http://dx.doi.org/10.1016/j.tet.2010.02.078

A highly efficient flow reactor process for the synthesis of N-Boc-3,4-dehydro-L-proline methyl ester
Lucia Tamborini, Paola Conti, Andrea Pinto and Carlo De Micheli
Dipartimento di Scienze Farmaceutiche ‘Pietro Pratesi’, Università degli Studi di Milano, Italy

http://dx.doi.org/10.1016/j.tetlet.2009.12.071

Efficient continuous flow synthesis of hydroxamic acids and suberoylanilide hydroxamic acid preparation
E. Riva1, S. Gagliardi2, Caterina Mazzoni2, M. Martinelli2, D. Passarella1, D. Vigo2 and A. Rencurosi2
1 Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
2 NiKem Research S.r.l., Milan, Italy

http://dx.doi.org/10.1016/j.tetasy.2009.12.023

The application of flow microreactors to the preparation of a family of casein kinase I inhibitors
Francesco Venturoni, Nikzad Nikbin, Steven V. Ley and Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1039/b925327k

Multi-step synthesis by using modular flow reactors: the preparation of YneOnes and their use in heterocycle synthesis
Ian R. Baxendale1, Søren C. Schou2, Jörg Sedelmeier3, Steven V. Ley1
1 ITC, Department of Chemistry, University of Cambridge
2 LEO Pharma, Medicinal Chemistry Research, Denmark

http://dx.doi.org/10.1021/chem.200902906

A flow process using microreactors for the preparation of a quinolone derivative as a potent 5HT1B antagonist
Zizheng Qian, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK

A flow-based synthesis of Imatinib: the API of Gleevec
Mark D. Hopkin, Ian R. Baxendale and Steven V. Ley
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1039/c001550d

ReactIR flow cell: a new analytical tool for continuous flow chemical processing
Catherine F. Carter1, Heiko Lange1, Steven V. Ley1, Ian R. Baxendale1, Brian Wittkamp2, Jon G. Goode3 and Nigel L. Gaunt3
1 Innovative Technology Centre, Department of Chemistry, University of Cambridge
2 Mettler-Toledo AutoChem, USA
3 Mettler-Toledo AutoChem, UK

http://dx.doi.org/10.1021/op900305v

A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor
Laia Malet-Sanz, Julia Madrzak, Rhian S. Holvey and Toby Underwood
Research Chemistry, Pfizer Global Research and Development, Sandwich, UK

http://dx.doi.org/10.1016/j.tetlet.2009.10.007

Development of fluorination methods using continuous-flow microreactors
Marcus Baumann, Ian R. Baxendale, Laetitia J. Martin, Steven V. Ley
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1016/j.tet.2009.05.083

Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles
A bifurcated pathway to thiazoles and imidazoles using a modular flow microreactor

Ian R. Baxendale, Steven V. Ley, Christopher D. Smith, Lucia Tamborini and Ana-Florina Voica
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1002/anie.200900970

The use of diethylaminosulfur trifluoride (DAST) for fluorination in a continuous-flow microreactor

Marcus Baumann, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1055/s-2008-1078026

A modular flow reactor for performing Curtius rearrangements as a continuous flow process

Marcus Baumann¹, Ian R. Baxendale¹, Steven V. Ley¹, Nikzad Nikbin¹, Christopher D. Smith¹ and Jason P. Tierney²
¹ Innovative Technology Centre, Department of Chemistry, University of Cambridge
² Neurology Lead Discovery Chemistry, GlaxoSmithKline R and D, Harlow, UK

http://dx.doi.org/10.1039/b801631n

[3 + 2] Cycloaddition of acetylenes with azides to give 1,4-disubstituted 1,2,3-triazoles in a modular flow reactor

Christopher D. Smith¹, Ian R. Baxendale¹, Steve Lanners¹, John J. Hayward², Steven V. Ley¹, Stephen C. Smith²
¹ Innovative Technology Centre, University of Cambridge, UK
² Syngenta, Jealots Hill International Research Centre, UK

http://dx.doi.org/10.1039/b702995k

Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions

Marcus Baumann, Ian R. Baxendale, Steven V. Ley, Nikzad Nikbin and Christopher D. Smith
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1039/b801634h

A microcapillary flow disc reactor for organic synthesis

Christian H. Hornung¹, Malcolm R. Mackley², Ian R. Baxendale¹, Steven V. Ley¹
¹ Department of Chemistry, University of Cambridge
² Department of Chemical Engineering, University of Cambridge

http://dx.doi.org/10.1021/op700015f

A flow reactor process for the synthesis of peptides utilizing immobilized reagents, scavengers and catch and release protocols

Ian R. Baxendale, Steven V. Ley, Christopher D. Smith and Geoffrey K. Tranmer
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1039/b612197g

Fully automated flow-through synthesis of secondary sulfonamides in a binary reactor system

Charlotte M. Griffiths-Jones, Mark D. Hopkin, Daniel Jönsson, Steven V. Ley, David J. Tapolczay, Emma Vickerstaffe, and Mark Ladlow
GlaxoSmithKline Cambridge Technology Centre, Cambridge

http://dx.doi.org/10.1021/cc060152b

Fully automated continuous flow synthesis of 4,5-disubstituted oxazoles

Marcus Baumann, Ian R. Baxendale, Steven V. Ley, Christopher D. Smith, and Geoffrey K. Tranmer
Innovative Technology Center, University of Cambridge

http://dx.doi.org/10.1021/ol061975c

Continuous flow ligand-free heck reactions using monolithic Pd [0] nanoparticles

Nikzad Nikbin, Mark Ladlow, and Steven V. Ley
Department of Chemistry, University of Cambridge, UK
Tagged phosphine reagents to assist reaction work-up by phase-switched scavenging using a modular flow reactor
Christopher D. Smith, Ian Baxendale, Geoffrey Tranmer, Marcus Baumann, Stephen Smith, Russell Lewthwaite and Steven V. Ley
Department of Chemistry, University of Cambridge, UK

http://dx.doi.org/10.1021/op7000436

A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly
Ian R. Baxendale, Jon Deeley, Charlotte M. Griffiths-Jones, Steven V. Ley, Steen Saaby and Geoffrey K. Tranmer
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1039/b703033a