SYNTHESIS AND CONTROL OF SPIN CROSSOVER COMPOUND [Fe(Htrz)₂(trz)](BF₄) NANOSCALE PARTICLES WITH TUBULAR FLOW REACTORS

Pierre-Baptiste Flandrin¹, Karen Robertson¹, Chick C. Wilson¹, Paul R. Raithby¹ Duncan Guthrie²

¹ Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom ² Vapourtec Ltd, Bury St Edmunds, IP28 6TS, United Kingdom

Spin-crossover coordination polymers

- Spin Crossover (SCO) materials switch reversibly between high spin (HS) and low spin (LS) states in response to changes in temperature, pressure and/or light irradiation. The switching process is highly size dependant - need homogenous nanoparticles for reproducible properties.
- $[Fe(Htrz)_2(trz)](BF_4)$ changes color in response to the changing spin of the Fe^{IV} ion upon heating the compound changes from pink to white.
- Standard synthesis of this compound is by combination of two aqueous solutions and triazole (Htrz) at room temperature. Depending on mixing conditions the product can have a wide crystal size distribution. We have synthesized this compound in a range of Vapourtec flow reactor and compared the crystal size obtained.

Particle size targeting with DOE

- DOE was employed with 40 experiments on 2 different reactors with static mixers (3.2 mm and 5.6 mm bore tubing).
- \circ 4 Factors were used; three continuous factors concentration Fe(BF₄)₄·6H₂O, concentration of Htrz and flow rate
 - one categorical 2 level factor size of reactor (3.2 or 5.6 mm bore)
- The software Minitab[®] was used in order to create surface response plots of the variables to target a range of different particle size
 - Mapping of the particle size average distribution(PSD) of the 3.2 mm (left) and 5.6 mm (right) bore tubing reactor – CI and CT concentration (g/100mL) and F flow rate (mL/min)

Lonc Irz * Con Iron Flow rate * Conc Iron

Conc Trz * Conc Iron Flow rate * Conc Iron

PSD

Coordination polymer chain: Fe (red); N (blue); C (brown). $[BF_4]^-$ counterion not shown for clarity. *Phys. Chem. C* **2011,** *115,* 1323–1329

Spin crossover (SCO) compounds are of great interest for data storage materials due to their highly reversible switching between spin states.

Vapourtec R-Series

- Design of Experiment was pursued to control and target particle size, the response surface model was used to create a mapping of the particle target
- Experiments were carried out with a Vapourtec R-Series kit equipped with different reactors
- A 1 mm bore open-tubing reactor with a 30 mL volume

• 3 mm and 6 mm bore tubing (respectively 64 mL and 140 mL volume) equipped with static mixer

Particle size target for 300 nm

Particle size target for 100 nm

1 μm 200 nm 100 nm SEM for 3.2 mm (left), 5.6 mm (center) bore tubing with static mixers and 1 mm tubing (right)

Future Work

- Investigating other SCO compounds to see their magnetic behaviour depending on their particle size
- The anti-solvent precipitation reaction via diethyl ether of $Fe(BF_4)_2 \cdot 6H_2O$ with 2,6-Bi(pyrazol-1yl)-pyridine (1-BPP) gives $[Fe(1-BPP)_2][BF_4]_2$ was achieved with a tube-in-tube reactor consisting of a perforated PFA inner tubing and a PFA outer tubing
- The solution produced is flowed through the inner tube and precipitate out in the outer tubing after entering in contact with diethyl ether via the perforated holes Initial results show a large improvement in particle size distribution compare to batch as shown on the pictures below

3.2 mm bore tubing reactor

5.6 mm bore tubing reactor

Flow division inside the reactor due to helicoidal static mixers

Particles from batch (left) and tube-in-tube reactor from Vapourtec (right)

Pioneering research and skills