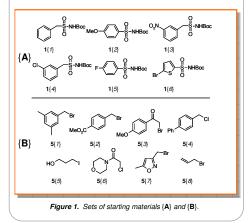
Fully Automated Synthesis of Secondary Sulfonamides in a Binary Flow-Through Reactor System[§]

^aCharlotte Griffiths-Jones, ^bDuncan Guthrie, ^aMark Hopkin, ^aEmma Vickerstaffe, ^cSteven V. Ley, ^aMark Ladlow*

^aTechnology Development UK, GSK Cambridge Technology Centre, Cambridge, UK; ^bVapourtec Ltd, Place Farm, Ingham, Suffolk, UK; ^cUniversity Chemical Laboratory, Lensfield Road, Cambridge, UK.

Introduction

PACT Mesoflow Chemistry


Polymer-Assisted Continuous flow-Through (PACT) synthesis utilises supported reagents packed into *reactor columns* that are located in a continuous flow reaction stream. These may be linked to create a continuous multi-step flow process in which individual substrates are periodically introduced into the flow stream prior to elution through a series of functionalised supports to effect both sequential synthetic transformations and inline purification. Moreover, flow-through synthesis is typically performed under pressure, thereby affording straightforward access to superheated reaction conditions, comparable to those achieved in a microwave reactor.

Central to our efforts in this emerging area has been the development of a new, multi-channel flow reactor, the Vapourtec R-4. The R-4 can be used in manual mode for simple flow chemistry experimentation, however, here we exemplify a more sophisticated implementation of this device as a central component within a fully automated flow synthesis platform that is able to perform unattended combinatorial library synthesis.

Monoalkylsulfonamides are an important drug-like chemotype. However, their preparation by the treatment of sulfonyl chlorides with primary amines often leads to the formation of bis-sulfonylated contaminants. Alternatively, N-alkylation of Boc-protected sulfonamides **{A**} with alkyl halides **{B**} followed by Boc deprotection under acidic conditions affords monoalkylsulfonamides **{A,B}** directly in good yields and high purities (Scheme 1). In this way, monoalkylsulfonamide 2-step PACT synthesis.

Flow-through Synthesis

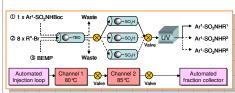


Figure 2. Automated flow-through synthesis process.

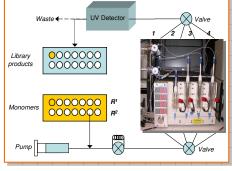
Synthesis:

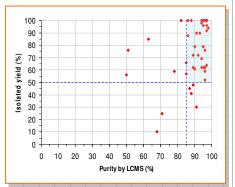
- A Boc-sulfonamide {A} is 'captured' in an activated zwitterionic form by elution through a column containing the strong polymer-supported base PS-TBD at 80°C.
- 2. The column is then sequentially eluted with calibrated, sub-stoichiometric amounts of 8 different alkyl halides {B} that react in turn to 'release' the corresponding monoalkylated sulfonamide reaction products {A,B} into the outflow stream.
- 3.The outflow is directed through a second, in-line reactor column containing an acidic resin (Amberlyst H-15) at 85°C, which quantitatively removes the Boc protecting group.
- 4. The eluted monoalkylsulfonamide reaction products $\{\textbf{A},\textbf{B}\}$ are detected by UV and collected.
- 5.The 'release' cycle is repeated until the PS-TBD column is exhausted.

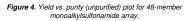
Regeneration:

- 1.The PS-TBD column is fluidically isolated from the Amberlyst H-15 column.
- 2. The PS-TBD column is regenerated by elution with a solution of the P_1 -phosphazene base BEMP.
- 3.The PS-TBD column is washed with system solvent (MeCN).

This process was repeated twice more using a new Amberlyst H-15 PACT reactor each time. In this case, 8 library compounds were prepared in each cycle.




Figure 3. Schematic showing automated PACT flow-through synthesiser configuration and the central Vapourtec R-4 multichannel flow reactor.


Results

Each stage of the process is programmed to run automatically on a synthesiser that combines an automated sample injection/collection module with the Vapourtec R-4 flow reactor (Figure 3). The system is controlled through a common user interface.

In this way, 24 individual compounds can be synthesised in a single automated run. The H-15 PACT reactors are then replaced prior to performing additional array syntheses.

The same PS-TBD reactor column can typically be reused in excess of 30 times and the on-column residence time for each synthetic step was approximately 20 min.

Conclusions

- A 2-step PACT synthesis based upon a 'catch-andrelease' strategy has been developed leading to a 48member monoalkylsulfonamide compound array {A,B}.
- The flow-through PACT synthesis combines iterative cycles of substrate capture, alkylative release, column regeneration, and column selection protocols in a fully automated process.
- All compounds were prepared on a 33 μmol scale corresponding to ~15 mg product.
- 88% Of the targeted compounds were isolated directly from the synthesiser in excellent purities (>85%) without the need for further chromatographic purification (Fig. 4).
- This work was facilitated by the development of the Vapourtec R-4, a new and flexible tool for exploring flowthrough chemistry applications in the research laboratory.

Acknowledgements

vapourtec

We are grateful to GlaxoSmithKline for financial support, and Gary Davies is thanked for technical assistance.

[§]Griffiths-Jones, C. M.; Hopkin, M. D.; Jönsson, D.; Tapolczay, D. J.; Vickerstaffe, E.; Ley, S. V.; Ladlow, M. *J. Combi. Chem.* 2007, 10.1021/cc060152b.