CONTINUOUS FLOW SYNTHESIS OF HYDROXAMIC ACIDS

S. Gagliardi, M. Martinelli, C. Mazzoni, D. Passarella,[§] A. Rencurosi, <u>E. Riva</u>,[§] D. Vigo

NiKem Research S.r.I., via Zambeletti 25, 20021 Baranzate, Milano, Italy [§]Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano www.nikemresearch.com elena.riva@unimi.it

Introduction

Recently, flow technologies have received a great deal of attention and a fair number of scientific publications have demonstrated their potential for improving productivity in organic synthesis.¹

Established advantages of micro-flow processes are:

- immediate heat transfer precise mixing rapid optimization of reaction conditions
- *in-situ* generation and use of hazardous intermediates
- solvent superheating

This technology was applied to the synthesis of hydroxamic acids, well known inhibitors of important biological targets as metalloproteinases and histone deacetylases,² representing a challenge for organic chemists because of their low solubility and stability.

Scope of the project

 Set-up of optimal reaction conditions for the transformation of carboxylic esters into the corresponding hydroxamic acids using a continuous flow reactor.

- Preparation of a small collection of hydroxamic acids having a range of functional groups.
- Process scale-up.

easy scale-up

Tools

All experiments were performed using Vapourtec **R Series Flow Chemistry System.**³

Instrument configuration:

 The inlet selection values were separately connected to the bottles containing the reagents.

 The reactor channels were combined at a Tpiece mixer, connected to a Dual-CoreTM tubing reactor (5 - 15 mL) and heated to the desired temperature (up to 150°C).

psi backpressure regulator was 150 Α connected in-line between the tubing reactor and

Set-up of optimal reaction conditions

The reaction set-up was firstly performed using methyl benzoate (1) with hydroxylamine in the presence of MeONa in MeOH. The effects of flow rate, reactor volume and temperature were investigated (see Table).

reproducibility

A (0.5 M)

Entry	Flow (ml/min)	Reactor Volume (ml)	Residence Time (min)	T (°C)	Conversion (%)*	
					1	2
1	1	5	5	50	48	52
2	1	5	5	70	35	65
3	1	5	5	80	32§	58
4	0.5	10	20	60	24	76
5	0.5	10	20	70	26	74
6	0.5	15	30	70	20	80

the connection valve.

Preparation of a set of hydroxamic acids

The optimized reaction conditions (concentration, retention time and temperature) were successfully applied for the preparation of a collection of hydroxamic acids. Good yields of isolated products, purity (>95%) and high reproducibility were achieved.

*LC/MS at 215 nm, § presence of carboxylic acid as byproduct

Higher conversion of the desired product (2) increasing the temperature.

- Formation of a byproduct at temperatures higher than 80°C.
- Increased Residence Time using lower flow rate and longer tubing reactor.
- Best conditions in Entry 6: 82% yield of isolated product (theoretical output: 1.7 g/h).
- 58% Conversion (LC/MS) obtained after 30 minutes using traditional equipment (round-bottom flask) at the same temperature and concentration.

Stereochemical consideration

The method was successfully applied to enantiomerically pure esters without loss of stereochemical integrity, as for *N*-Boc-alanine.

NHBoc NHOH $[\alpha]^{25}_{D exp} = -28^{\circ}$ $(lit^{4} = -29^{\circ}, c 1, MeOH)$

Scale-up

In one experiment 4.3 g of N-hydroxy-2-phenylacetamide were straightforwardly produced after 1.5 hour (output 2.9 g/h). Yield and purity were similar to the smaller scale assay. We then demonstrated that this flow process can be readily scaled up to provide a relevant amount of material.

Conclusion

A fast optimization of reaction conditions was performed for the conversion of methyl or ethyl esters into hydroxamic acids. The best results were obtained at 70°C and with a residence time of 30 minutes. This protocol demonstrates high reproducibility with good purity and yields of final products. Aryl, alkylaryl, amino esters (both N-protected and unprotected), heterocyclic and sulfonamido esters were suitable substrates. Stereochemical integrity in the conversion of α -aminoacids and reproducible scale-up were assessed.

1 Mason, B.P.; Price, K.E.; Steinbacher, J.L.; Bodgan, A.R.; McQuade, D.T. Chem. Rev. **2007**, 107, 2300. 2 Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Nature Rev. Drug Discovery 2006, 5, 769. 3 www.vapourtec.com **4** Mordini, A.; Reginato, G.; Russo, F.; Taddei, M. Synthesis **2007**, *20*, 3201-3204.

