Multi-Step Continuous-Flow Synthesis

    • Joshua Britton*a
    • Colin L. Raston*a
    • * Corresponding authors
    • a School of Chemical and Physical Sciences, Flinders University, Bedford Park, Australia

    Organic chemistry is continually evolving to improve the syntheses of value added and bioactive compounds. Through this progression, a concomitant advancement in laboratory technology has occurred. Many researchers now choose to mediate transformations in continuous-flow systems given the many benefits over round bottom flasks. Furthermore, reaction scale up is often less problematic as this is addressed at the inception of the science. Although single-step transformations in continuous-flow systems are common, multi-step transformations are more valuable. In these systems, molecular complexity is accrued through sequential transformations to a mobile scaffold, much like an in vitro version of Nature’s polyketide synthases. Utilizing this methodology, multi-step continuous-flow systems have improved the syntheses of active pharmaceutical ingredients (APIs), natural products, and commodity chemicals. This Review details these advancements while highlighting the rapid progress, benefits, and diversification of this expanding field.

    Read the publication that featured this abstract

    Get in touch

    For more information on flow chemistry systems and services please use the contact methods below.

    Call us on +44 (0)1284 728659 or Email us